Extended Disk
Fortran

User’'s Manual

Copyright © 1978, by Processor Technology Corporation
First Edition, First Printing, June, 1978
Manual Part No. 727101
All rights reserved.

IMPORTANT NOTICE

This manual, and the programs it describes, are copyrighted by Processor Technology Corporation. All rights
are reserved. Processor Technology software packages are distributed through authorized dealers solely for sale
to individual retail customers. Wholesaling of these packages is not permitted under the agreement between
Processor Technology and its dealers. No license to copy or duplicate is granted with distribution or subse-
quent sale.

TABLE OF CONTENTS

SECTION PAGE
1 INTRODUCTIONt e i 1-1
1.0 INTRODUCTION. . ..ot 1-1
1.1 HOW TO USE THISBOOK, 1-1
1.2 SYMBOLS AND CONVENTIONSot 1-2
1.3 SYSTEM REQUIREMENTS i, 1-3
1.4 SOFTWARE CONFIGURATION. P 1-3
2 THE PTDOS FORTRAN LANGUAGE 2-1
2.0 INTRODUCTION. . ..o i, 2-1
2.1 CHARACTERISTICS OF PTDOS FORTRAN STATEMENTS 2-1
2.1.1 Statements and Statement Lines 2-1
2.1.2 Continuations oottt 2-1
2.1.3 COmMmMEntS . ..ottt e e 2-2
2.1.4 Labels o 2.2
2.1.5 Characters in FORTRAN Programs 2-2
2.2 ELEMENTS OF THE LANGUAGE 2-3
2.2.1 ComStantSot 2-3
2.2.2 Variables 2-4
2.2.3 Expressions......... ... 2-5
2.2.4 Order of Evaluation in Expressions 2-5
2.2.5 Integer Expressions, 2-6
2.2.6 Real Expressions. i 2-7
2.2.7 Logical Expressions 2-7
2.2.8 Internal Formats and Ranges of Values...................... 2-8
3 PREPARING THE SOURCE PROGRAM FILE 3-1
3.0 INTRODUCTION. . ..o i, 3-1
3.1 CREATING A PROGRAM. i 3-1
3.2 FORMAT OF APROGRAMFILE i, 3-2
4 HOW TO COMPILE, ASSEMBLE, AND EXECUTE
A FORTRAN PROGRAM 4-1
4.0 INTRODUCTION. ... i, 4-1
4.1 COMPILATION AND ASSEMBLYo i, 4-1
4.1.1 Parameters in the FORTRAN Command Line. 4-2
4.1.2 Compilation Errors. i, 4-3
4.2 EXECUTION .. oo e i, 4-3
4.2.1 Runtime Errors. 4-4
4.2.2 Large Programs 4-4
5 PTDOS FORTRAN STATEMENTS i 5-1
5.0 INTRODUCTION e i 5-1
5.1 ASSIGNMENT STATEMENTS i, 5-1

i FORTRAN

5.2 PROGRAM TERMINATION. e e
END, STOP, PAUSE
53 CONTROL STATEMENTS o e
GO TO, ASSIGN, IF, DO, CONTINUE
5.4 ERROR TRAPPING. i,
ERRSET, ERRCLR, DUMP
55 INPUT AND OUTPUT . ..o
5.5.1 Free-Format Terminal Input and Output
ACCEPT, TYPE
5.5.2 Formatted Input and Output.
FORMAT
5.5.3 File Input and Qutput............. oo,
READ, WRITE, REWIND, BACKSPACE, ENDFILE
5.5.4 Dynamic Formatting
5.5.5 Binary Input and Output.
5.6 DECLARATION STATEMENTS. e
5.6.1 Type Declarations.
INTEGER, REAL, LOGICAL, IMPLICIT ,
5.6.2 ATTays ..o
DIMENSION
5.6.3 Initializing Variables
DATA
5.6.4 The COMMON Declaration.coouiireinnnnnn..
5.7 SUBROUTINES AND FUNCTIONS e e
5.7.1 Subroutines.
CALL, SUBROUTINE, RETURN
5.7.2 Functions. o
5173 BLOCK DATA Subprogram.coiiiiuenennan...
5.8 COPYING SOURCE FILES e
COPY
SYSTEM SUBROUTINES . ..o e e e
6.0 INTRODUCTION. .. .o e e e e
6.1 FILE HANDLING e e
6.1.1 Opening and Closing Files.
OPEN, CLOSE
6.1.2 Random Accessto Files...........
RANDOM, SEEK, SPACE
6.1.3 File Management
CREATE, KILL, CHNAME , CHTYPE, CHATTR
FINFO, SETUNT, CONTRL
6.2 SPECIAL TERMINAL INPUT ANDOUTPUT
CIN, CTEST, PLOT
6.3 PROGRAM TERMINATION e
EXIT, ABORT, DELAY
6.4 PROGRAM LINKING i,
CHAIN

i FORTRAN

6.5 OTHER UTILITY SUBROUTINES. o e 6-14
MOVE, CBTOF, BIT

SYSTEM FUNCTIONS. . ..o e e e e e e 7-1

7.0 INTRODUCTION. . .. e e e e e e e 7-1

7.1 GENERAL MATHEMATICAL FUNCTIONS it 7-1

7.2 TRIGONOMETRIC FUNCTIONS i 7-3
SIN, COS, TAN, ATAN, ATAN2

7.3 COMPARING CHARACTER STRINGS i 7-3
COMP

7.4 EXECUTING ASSEMBLY-LANGUAGE PROGRAMS -4
CALL

ASSEMBLY-LANGUAGE INTERFACE i 8-1

APPENDICES

FORTRAN STATEMENT SUMMARYo e Al-1

SUMMARY OF SYSTEM SUBROUTINES. A2-1

TABLE OF FUNCTIONS e e e e A3-1

DEVICE INTERFACE e e Ad-1

COMPILATION ERROR MESSAGES e AS5-1

EXECUTION ERRORS i e e e A6-1

COMPARISON OF PTDOS AND ANSI STANDARD FORTRAN. A7-1

BIBLIOGRAPHY i e e A8-1

ifi FORTRAN

= #

SECTION 1

INTRODUCTION

1.0. FORTRAN for PTDOS

Extended Disk FORTRAN is an 8080 version of FORTRAN that uses the Helios II disk memory system. The
combination of the powerful FORTRAN language and the fast random access memory of Helios II offers users
a unique problem-solving system.

Extended Disk FORTRAN is used as a subsystem of the Processor Technology Disk Operating System, PTDOS,
and will be called PTDOS FORTRAN throughout this manual. Many other subsystems of PTDOS are available
to the FORTRAN user. Users of PTDOS FORTRAN can create programs quickly and easily in PTDOS editors,
or work with existing FORTRAN source files in either normal or ALS-8 format.

PTDOS FORTRAN gives you access to all the disk operating system capabilities from your FORTRAN pro-
gram, including:

® File management, including creating, killing, and changing attributes.
¢ Random access to data files.

¢ Input from and output to device files.

The special capabilites of the PTDOS FORTRAN language itself include:
® Free format input and output.
® Character string data type and a string comparison function.
® A COPY statement to copy files of source statements into a FORTRAN source program.

® Assembly language interface. Assembly language statements can be included in the source file
and assembly routines can be called from the FORTRAN program.

® Direct control over the video display.

® Access to absolute memory locations, including individual bits.
® Program-controlled time delay.

® A pseudo-random number generator function.

® Program control of runtime error trapping.

® Ability to chain a sequence of programs.

PTDOS FORTRAN is both a subset and a superset of ANSI standard FORTRAN. To adapt FORTRAN to work
efficiently on the Sol Terminal Computer, some ANSI standard features have been left out. On the other hand,
there are added features that are particulary suited to the computer terminal - disk memory - video display
system. A detailed comparison of PTDOS FORTRAN and version X3.9 - 1966 of ANSI standard FORTRAN
appears in Appendix 7.

1.1. HOW TO USE THIS BOOK

This book presents PTDOS FORTRAN, describing how to use it within the PTDOS system. The basic defini-
tions are given, as well as detailed descriptions of the statements, functions, and subroutines that make up

PTDOS FORTRAN.

1-1 FORTRAN

This book is not intended as an introduction to FORTRAN. Several introductory FORTRAN books are listed in
Appendix 8 as recommended reading for new FORTRAN users.

Read this book from cover to cover first, as a text. The material is presented in order of use after the basic
information and definitions in Section 2. After you are familiar with PTDOS FORTRAN, you can use this
book as a reference. In addition, statement, subroutine, and function summaries are presented in Appendices
1, 2, and 3, respectively.

Section 2 describes the elements of PTDOS FORTRAN and gives the fundamental definitions.

Section 3 tells how to create a PTDOS FORTRAN source program. It describes the overall format of a source
file and presents compilation options.

Section 4 describes alternative ways to compile, assemble, and execute PTDOS FORTRAN programs.

Section 5 presents each PTDOS FORTRAN statement. The statements are presented in order of increasing
difficulty. This section is likely to be used often for reference.

Sections 6 and 7 describe system-supplied subroutines and functions, respectively. PTDOS FORTRAN subrou-
tines in particular provide the capability for fast, efficient input and output, and control over disk files.

Section 8 tells how you can include assembly-language statements in a FORTRAN program and call assembly-
language routines from a FORTRAN program.
1.2. SYMBOLS AND CONVENTIONS

The symbol <CR> is used in examples throughout this document to indicate that the user presses the carriage
return key. For example:

User: FORTRAN FSOQURCE,FLIST,,FOBJ <CR> The user types the line
shown followed by a
carriage return.

Command and statement forms use upper- and lowercase characters to differentiate between characters to be
typed literally and terms indicating the type of information to be inserted. For example, the following state-
ment form indicates that the word ENDFILE should be typed followed by a unit number selected by the
user:

ENDFILE unit
Punctuation in command and statement forms should be interpreted literally. For example, the statement form

below indicates that the word INTEGER should be followed by one or more variable names separated by
commas:

INTEGER varil, var2,

The ellipses indicate an indefinite number of arguments.

Optional elements of command and statement forms are enclosed in braces. For example:

STOP {character string) The character string following the word STOP may be
included or omitted, depending on the desired result.

The word “list™ is sometimes used in statement forms to indicated one or more elements separated by
commas. For example:

ACCEPT input list The word ACCEPT is followed by one or more input
items separated by commas.

1-2 FORTRAN

In formatted values, the letter b represents a single blank. For example:

b12bb The number 12 is preceded by one blank and followed by two blanks.

1.3. SYSTEM REQUIREMENTS

PTDOS FORTRAN must be used as part of the PTDOS operating system. PTDOS and FORTRAN together
require 32K of memory.

The hardware recommended is a Helios II disk memory system and its computer with two or more disks.
In addition to hardware, you should have several data diskettes and a Helios II Disk Memory System Manual.

The full version of FORTRAN is provided on a Processor Technology Corporation diskette. The FORTRAN
software is contained on six files. The amount of memory used at any time depends on the files that are
active, but at least 32K of memory should be provided.

1.4. SOFTWARE CONFIGURATION
All PTDOS system files and the following PTDOS FORTRAN files are required to use PTDOS FORTRAN:

FORTRAN —FORTRAN compiler

FORTEROR ~compiler error message file

FORTGO —runtime package for the quick compile option

FORTDEFS —definitions needed for the quick compile option

FORTRUN —source code for the long compile option

RUNTIME — COPY statements for the runtime package of the long compile option

Assuming you start with a PTDOS System Diskette and a PTDOS FORTRAN Diskette, you should use GET or
COPY commands to rearrange the files until you have the following configuration:

Unit: Default 0 1 Any
PTDOS system files FORTGO FORTRUN FORTRAN
FORTEROR
FORTDEFS
RUNTIME

The default unit is usually 0, but you can reset it to any available unit. One example of a configuration that
can be used for any FORTRAN operation is:

Unit 0 (Default) Unit 1

PTDOS system files FORTRUN
FORTEROR

FORTDEFS

RUNTIME

FORTGO

FORTRAN

FORTRUN is usually copied to a separate unit because it is a very large file. However, you can arrange to
have all PTDOS and FORTRAN files on unit 0 by changing the COPY FORTRUN/1 statement in RUNTIME
to COPY FORTRUN.

Before using PTDOS FORTRAN it is a good idea to set the lowest address of the buffer to about 8400 to allow
more memory for FORTRAN operations, provided enough memory is available.

The steps listed below show one of many possible ways to prepare your system for PTDOS FORTRAN
operations:

1-3 FORTRAN

1. Connect the Sol Terminal Computer to a Helios II Disk System.

2. Supply power to the computer, disk system, and video display. The prompt > should appear on the screen
indicating that the SOLOS or CUTER monitor program is active.

3. Insert the PTDOS System Diskette in Unit 0 of the HELIOS, then type:
BOOTSTRAP <CR>

The system loads PTDOS and displays messages followed by the prompt *.
4. Insert the PTDOS FORTRAN diskette in Unit 1 of HELIOS and copy all but FORTRUN to Unit 0:

GET /0,I=/1,FORTRAN,RUNTIME,FORTGO, FORTDEFS,FORTEROR <CR>

5. If possible, allow more memory space by decreasing the lowest buffer address:

SET BU = 8400 <CR> (or use the CONFIGR command)

1-4 FORTRAN

SECTION 2

THE PTDOS FORTRAN LANGUAGE

2.0. INTRODUCTION

The FORTRAN language consists of statements, which are individual instructions to the computer that can be
arranged to describe a process. Such an arrangement of statements is called a program. For example, the
following FORTRAN program contains 10 statements that are arranged to add a list of numbers:

C THIS PROGRAM ADDS NUMBERS

o
TYPE 'ENTER AS MANY AS 100 NUMBERS'
TYPE 'TO TERMINATE ENTRIES, TYPE O
DO 10 I = 1,100
ACCEPT '?', A
IF (A .EQ. 0) GO TO 20

10 SUM = SUM + A

20 TYPE 'THE SUM IS ', SUM

END

The above program consists of a “main routine” only. A FORTRAN program must include a main routine. It
may also include subroutines and functions, which are sometimes called ‘“‘subprograms” collectively. The term
“routine’’ refers to any of the logical parts: main routine, subroutine, or function.

This section describes the characteristics of FORTRAN statements and the entities that these statements act on
(constants, variables, and expressions).
2.1. CHARACTERISTICS OF PTDOS FORTRAN STATEMENTS

The example above demonstrates some of the properties of FORTRAN statements. The statements adhere to a
fixed format and certain character positions have special meanings. The rules for FORTRAN statements are
described in detail in the units that follow.

2.1.1, Statements and Statement Lines

The body of a statement line starts in column 7 and ends with a carriage return. It can be any length but only
the first 72 characters are retained. Only one statement is allowed on a statement line.

A statement is a complete instruction to the computer and can be comprised in one or more statement lines.
The entire statement can contain up to 530 characters including blanks.

2.1.2. Continuations

To continue a statement on an additional statement line, place any character except 0 or blank in column 6 of
the new line. For example:

DO 100 I =
c1,20

TYPE 'THIS STATEMENT IS CONTINUED
+« BELOW'

Notice the blank before BELOW. Statement lines are not padded with blanks between the final carriage return
and column 72, so a blank is necessary to produce CONTINUED BELOW instead of CONTINUEDBELOW.

2-1 FORTRAN

2.1.3. Comments

To include a comment in your program, place a C in column 1. This causes the rest of the line to be
completely ignored by the compiler. It is a good practice to insert many comments in a long program to serve
as documentation. For example:

C Environmental data will now be read from "DATA3"
CALL OPEN(5, 'DATA3')
READ (5,100)E1,E2,E3

2.1.4. Labels

Statement labels allow statements to be referred to by other statements. For example:

GO TO 70

70 ACCEPT 'ANSWER = ', ANSWER

The labels need not be in any particular sequence. Statements should not be labelled unless they are refer-
enced. A labelled statement that is not referenced produces a warning message during compilation.

A statement label must be an integer between 0 and 99999 placed anywhere in columns 1 through 5. The
placement in columns 1 through 5 does not affect the value of the label. For example, the following state-
ments are identical:

10 CONTINUE
10 CONTINUE

In any program or subprogram (subroutine or function), a given label can only be used once. Labels are
unique to each logical block, so the same label that appears in the main program can also be used in a
subroutine or function.

2.1.5. Characters in FORTRAN Programs

Any characters may appear in comment lines.

Characters that appear between single quotation marks in a FORTRAN statement are treated literally and are
called character strings. There is one exception: when a pair of backslashes appear in a character string, the
characters between them are interpreted as a hexadecimal constant. In character strings, lowercase characters
are not converted to uppercase and blanks are retained.

In all other cases, blanks in FORTRAN statements are ignored. For example, the two statements below are
identical:

WRITE (1 , 200) A, B, C
WRITE(1,200)A,B,C

Lower case letters that are not within a character string are converted to upper case during compilation. For
example, the variable names below all represent the same variable:

2-2 FORTRAN

TOTAL
total
TotAL
Special Characters
The following characters have special meanings in PTDOS FORTRAN:

! Quantities enclosed in single quotes are treated as string constants.

* Statements preceded with an asterisk are interpreted as assembly
language statements.

b Blanks are ignored, except between single quotes.

\ A constant enclosed in backslashes in a character string is assumed to be
the hexadecimal code for an ASCII character.

& If a FORMAT statment contains an ampersand, the character following
the ampersand is interpreted as a control character (unless it is also &).

$ Preceding a constant with a dollar sign indicates that it is a hexadecimal
constant.

Preceding a constant with a number sign indicates that it is a

hexadecimal constant to be stored internally in binary format.

2.2. ELEMENTS OF THE LANGUAGE

FORTRAN statements perform operations on constants, variables, and expressions. Each represents a value
stored in the computer. The units below discuss constants, variables, and expressions and describe how values
are stored internally.

2.2.1. Constants

A constant is a quantity that has a fixed value. PTDOS FORTRAN has numerical, string, and logical con-
stants. A numerical constant is an integer or real number, a string constant is a sequence of characters, and a
logical constant represents a value of true or false.

Numerical Constants

A decimal numerical constant can be expressed in any of the following forms:

Examples
Integer 1, -4000, 7179986
Floating point 1.73, -7811.81, .00016
Exponential 8.4E10, 987E-2, -2.4002E-5

You can specify a hexadecimal constant by preceding the number with a dollar sign. Examples are: SE060
and -3CC00. A hexadecimal constant represented this way is stored internally the same as any other integer
constant. The maximum absolute value for a hexadecimal constant is $FFFF.

Another way to specify a hexadecimal constant is to precede the number with a number sign (#). Examples
are: #E060 and —#CC00. This representation causes the value to be stored in binary form in the first two
bytes of a variable. The number is stored high byte followed by low byte. This representation is useful for
specifying ASCII codes. For example, the hexadecimal ASCII code for a carriage return is #0D00.

String Constants

A string constant, or character string, is specified by enclosing a string of characters in single quotation marks.

For example:

'John Smith'
'CITIES AND STATES'

To include single quotation marks in a character string, use two together. For example:

'Mike''s Place'

2-3 FORTRAN

By specifying the hexadecimal ASCII code for a character, you can include in a character string any character
that can be generated. Characters enclosed in backslashes are interpreted as hexadecimal constants. For
example:

'Hurry\21\"' is interpreted as ‘Hurry?’

TYPE '\7F\' displays a rubout when executed.

'This is a backslash: \5C\'

The last example demonstrates the only way a backslash can be included in a string.

Note: Never use \O\ as part of a character string in an input or output list (see the ACCEPT, TYPE,
READ, and WRITE statements). It will cause an error.

Logical Constants

The logical constants are .TRUE. and .FALSE.. They can be assigned to any variable. Numerically,
.TRUE. has the value 1 and .FALSE. has the value 0. In logical tests, any nonzero number is interpreted
as . TRUE..

2.2.2. Variables

A variable is an quantity that can have different values at different times. Values may be assigned to variables
with the assignment operator {(=). For example:

ALPHA = 17.5
ALPHA = ALPHA + 3
ICHRS = 'x y'
IVAL = 10

In PTDOS FORTRAN variable names may have one to six alphanumeric characters and the first character
must be alphabetic. There are two types of variable names: integer and real. By default, variable names
starting with I, J, K, L, M, or N are integer names and all others are real. The type of any variable name
can be changed using one of the type statements described later.

If a real value is assigned to an integer variable name, FORTRAN truncates the fractional part of the value. If
an integer value is assigned to a real variable name, FORTRAN converts the value to a real value. For
example:

IX = 17.9 assigns 17 to IX
AX 10 assigns 10. to AX

You can assign character strings to real or integer variable names using an assignment, READ, or DATA
statement. Any variable can contain up to six characters, but you can only assign up to four characters to an
integer variable using the assignment statement. For example:

NAME = 'Wats' Only four characters can be assigned to an integer
variable using an assignment statement.

ANAME = 'Watson' Six characters can be assigned to a real variable.

DATA NAME /'Watson'/ Six characters can be assigned to an integer variable

using the DATA statement.

When a string with fewer than six characters is assigned to a variable. the characters are stored left-justified
and the remainder of the word is filled with NULs (binary zeros).

Words that identify FORTRAN functions should be avoided as variable names. In addition, the reserved word
COPY may never be used as a variable name.

2-4 FORTRAN

2.2.3. Expressions

An expression is any valid combination of constants, variables, functions, and operators. An expression is
evaluated by performing operations on quantities preceding and/or following an operator. These quantities are
called operands. Examples of some expressions with their operators and operands are:

Operand Operator Operand
IANS * SUMXY
A .GT. ALPHA
.NOT. ANSWER
INCOME - EXPENS
- SAL

The .NOT. and unary minus (~) operators precede an operand. All other operators join two operands.

There are three types of operators: arithmetic, relational, and logical. A PTDOS FORTRAN expression may
include any of the following operators:

Arithmetic Operators

%% or ~ Exponentiation

* Multiplication
/ Division
+ Addition or Unary Plus

- Subtraction or Unary Minus

Relational Operators
LT, Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GE. Greater than or equal to
.GT. Greater than

Logical Operators

.NOT. Logical negation

.AND. Logical conjunction

.OR. Logical disjunction

.XOR. Logical exclusive disjunction

(Logical operators are described in unit 2.2.7, below.)

2.2.4. Order of Evaluation in Expressions

When FORTRAN evaluates an expression, it scans from left to right. It performs higher-order operations first,
and the results become operands for lower-order operations. For example:

X .GT.}|VAL1 - VAL2 The value of VAL1 - VALZ2 becomes an
operand for the .GT. operator.

2-5 FORTRAN

Thus, operators act on expressions.

The hierarchy of operator evaluations is as follows:

Highest *% or * (up arrow)
% and /
+ and - (including unary + and -)
.LT., .LE., .EQ., .NE., .GE., .GT.
.NOT.
.AND.
Lowest .OR. and .XOR.

Note: System and user functions are evaluated before any of the operators.

The examples that follow demonstrate the order of evaluation in FORTRAN expressions:

(-GAMMA)

I

FLPHA % BETA /
|

EXP (ARG) % %2
I

1

First

Second (When operators have the same order,
Third they are evaluated left to right.)

First (Functions are evaluated first.)
Second

ANSI Standard 3.9 does not prescribe the evaluation order for multiple successive exponentiation. PTDOS
FORTRAN performs such exponentiation from left to right. Some FORTRANs evaluate it differently. For

example:
FASE %% PWR1 %% PWR2
|
| |
-3%%J
- A %% B %% C

|

First
Second

First
Second

First
Second

Third

You can use parentheses to change the order of evaluation. Expressions in parentheses are evaluated before

any other part of an expressions. For example:

ANSWER .EQ. A .AND. .NO

T. B
First
Second

Third

ANSWER .EQ. (A .AND.

.NOT.

First
Second

Third

2.2.5. Integer Expressions

An integer expression has an integer value. It

results only when both operands acted on by an operator are

integers or when a real expression is assigned to an integer variable:

FORTRAN

integer operator integer
integer variable = real

If an operation in an integer expression results in a noninteger value, the result is truncated to an integer. For
example:

w w
~N NN

2 assigns 1, not 1.5 to K.
2 assigns 1. to A. Even though A is real, 3/2 is an integer
expression and its value is 1.

CAUTION:

Constants without decimals are integer constants and are not converted to real values
in integer expressions. Be sure to include decimal points in numerical constants when
you want real results, even if there are no places to the right of the decimal point. For
example, SIN(1/2) = 0 but SIN(1./2.) =0.479. ..

The value of an integer expression can have up to eight digits. If an integer operation results in more than
eight digits, a runtime error will occur.

2.2.6. Real Expressions

A real expression has a real value. When any operand in an expression is real, the expression has a real value.
Also, any expression assigned to a real variable is converted to a real expression. The following operations
result in real expressions:

real operator real
real operator integer
integer operator real
real variable = integer
real variable = real

When one of the operands is an integer, it is converted to a real value before the operation occurs. For
example:

L J The integer value of 7/5, 1, is converted to a

real value, 1.0.

The resultis 3.7 (1.0%3.7).

Real values range between -.99999999E+ 127 and + .99999999+ 127. The smallest absolute value is 0.1E-127.

If the value of a real expression is outside this range, a runtime error results.

2.2.7. Logical Expressions

A logical expression has a logical value of . TRUE. or .FALSE. corresponding to a numerical value of 1 or
0. Conversely, a logical operation interprets any zero value as . FALSE. and any nonzero value as . TRUE.
For example:

10 .GT. 100 has a value of . FALSE. (0).

.NOT. 35.02 has a value of . FALSE. (0) because 35.02 is a
nonzero value and is therefore . TRUE..

X .NE. O has a value of . TRUE. unless X = 0.

X .EQ. .TRUE. has a value of . TRUE. unless X = 0.

Notice that the last two expressions are equivalent.

2-7 FORTRAN

Logical expressions can include any operators. Relational operators joining two operands result in numerical
values of 1 or 0 and logical values of . TRUE. or .FALSE.. For example:

Expression Numerical Value Logical Value
1 .GT. 2 0 .FALSE.
2%3 .NE. 5 1 .TRUE.

The logical operator .NOT. preceding an expression results in the logical reverse of that expression’s value.
For example:

Expresion Numerical Value Logical Value
.NOT. 0.0001 0 .FALSE.
.NOT. © 1 .TRUE.
.NOT. 1.7/99 0 .FALSE.
.NOT. .TRUE. 0 .FALSE.

The logical operators .AND., .OR., and .XOR. join two expressions with the following results:

expressionl .AND. expression2 True only if both are true.

expressionl .OR. expression2 False only if both are false (true if one
or both are true).

expressionl .XOR. expression2 True only if one is true and one is false.

Examples are:

Expression Numerical Value Logical Value
0 .AND. 1 0 .FALSE.
15 .AND. 22 1 .TRUE.
0 .OR. .0003 1 .TRUE.
0. .XOR. .0003 1 .TRUE.
1 .0R. 3 1 .TRUE.
1 .XOR. 3 0 .FALSE.

Just as numerical expressions can be included in logical expressions, the numerical results of logical expres-
sions can be used as part of numerical expressions. For example:

ANSWER = 30.0 - 30 % (AX .AND. BX) - The value will be 30. or 0.
SUM = SUM + (VAL1 .XOR. VALZ2) - SUM is incremented by 1 or 0.

2.2.8. Internal Formats and Ranges of Values

Values are stored internally as six-byte BCD words. Integer and real numbers are stored with an eight-digit or
four-byte mantissa, a one-byte exponent, and a sign byte. The format is shown below:

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5

nn nn nn nn 0s ee
BCD number sign expo-
nent

A value of one for the sign byte indicates a negative number. The number 0 is stored as an exponent of zero
and the rest of the word is ignored.

The exponent for real numbers ranges from -127 to + 127. For integers, the exponent is between 0 and 8, and
all fractional digits are zeros. That is, integer values are maintained as integers internally.

2-8 FORTRAN

The ranges of numbers are:

Real: -.99999999E+ 127 to + .99999999E+ 127
The smallest absolute value is 0.1E-127.
Integer: -99999999 to + 99999999

The smallest absolute value is 0.
Strings can be stored in real or integer words. A string value stored in a variable can have as many as six

characters. Integer variables can contain up to six characters but only four can be assigned using the assign-
ment operator (=).

2-9 FORTRAN

T,

SECTION 3

PREPARING THE SOURCE PROGRAM FILE

3.0. INTRODUCTION

You can create the source code for a PTDOS FORTRAN program in either of the PTDOS editors: EDIT or
EDT3. These editors produce normal text files having lines terminated by carriage returns, or ALS-8 files.

If you have FORTRAN source files (either normal format or ALS-8) written on another system, you can read
the files from disk or tape, edit them with EDIT or EDT3, and store them on diskettes.

The PTDOS User’s Guide contains complete documentation for EDIT and EDT3. This section gives a quick
introduction for using EDIT to create a program file and does not describe EDT3.

3.1. CREATING A PROGRAM

There are two steps to creating a source program: creating the file and entering text into the file. You can
create the file separately or let EDIT do it for you. The advantage of creating the file yourself is that you can
assign to the file a type and block size other than the default values. For example:

*CREATE MYPROG, F, 200

|
‘ block size
type

file name

If you edit the file without first creating it, the file will be created with a type of ".” and a block size of 4C0.
To enter text into your file, call the editor as follows: *xEDIT file name <CR>
In EDIT, enter the statements of your program, following each statement line except the last with a carriage

return. EDIT has moving-cursor editing. Up-arrow, down-arrow, left-arrow, and right-arrow are all available
for moving the cursor to any position in the text.

Some of the EDIT commands are listed below. EDIT has many more capabilities than indicated here. It is very
worthwhile to study EDIT documentation in section 7 of the PTDOS User’s Guide.

Control T Insert characters

Control H Delete characters

Control B Insert line before the current line
Control P Delete the current line

Control R Scroll up 16 lines

Control C Scroll down 16 lines

Control F Exit and update file

ESCAPE Abort. No file update

In the example that follows, a user creates a file using the CREATE command and enters statements into the
file using EDIT:

3-1 FORTRAN

User:

EDIT:

User:
EDIT:
User:

EDIT:

User:

*CREATE FACTRL, F, 100 <CR>

*EDIT FACTRL <CR>
Editor

o e s o o ok e

Last load addr: OFFO
Load count: 0000

End of file at: OFF1
Bytes free: 740E
C/R to continue

<CR>

(Displays a screen full of nulls.)

C This program computes <CR>

C factorials. <CR>
IFACT = 1 <CR>
ACCEPT 'ENTER A NUMBER ', N <CR>
DO 10 I=1,N <CR>

10 IFACT = IFACT * I <CR>

TYPE N, ' FACTORIAL = ', IFACT <CR>

END <Control-F> ———————mee Exit EDIT. (Do not
*%% Editor exit type a carriage
0FF1 File start address return after the
10A8 File end address last line.)

00B8 File count
OK to write to "FACTRL"?

Y

The program file FACTRL is now on disk and can be compiled, assembled, and executed as described in

section 4.

3.2. FORMAT OF A PROGRAM FILE

In PTDOS FORTRAN the source code of all nonsystem subprograms called directly or indirectly by the main
program must be included on the program file with the main program. System subroutines and functions are
automatically available at execution time.

Each program, subroutine, and function on the program file ends with an END statement. No blank lines are
allowed after the END statement. Other than that, blank lines are ignored. The format of a program file is
demonstrated below:

FORTRAN

main program

END

subroutine
or function

END

subroutine
or function

END

You may precede any program or subprogram with an OPTIONS declaration to specify limits for parameters,
ask for more information from the compiler, etc.

The form of the OPTIONS declaration is
SOPTIONS option list
where items in the option list are separated by commas. No blanks are allowed in the option list.

The table below lists and describes all options that can appear in the option list. They may appear in any
order.

3-3 FORTRAN

Storage

Option Description Defauit Required
G Tells the compiler to list error numbers for compilation errors explicit
instead of explicit error messages. messages
X Tells FORTRAN to print the line numbers of statements causing no line
runtime errors. numbers
N Tell the compiler to compile for errors only. No assembly code is generates
generated. assembly
code
B Tells the compiler to copy each source statement to the assembly no
file as a comment preceding the code it generated. source
statements
E Tells the compiler to list as comments a refcrenee table equating no
user symbols, constants, and labels to internally-generated ones. reference
table
Q Allows error trapping. This option is required in routines that no error
have ERRSET statements. trapping
allowed
S=n | Specifies the number of symbols and constants allowed. 50 nx 12
bytes
L=n | Indicates the number of labels allowed. 50 nx6
bytes
T=n | Indicates the maximum number of temporary variables available 15 n bytes
during expression evaluation. The value of n cannot exceed 255.
D=n | Specifies the maximum level of nesting for DO loops. The value 5 nx4
of n cannot exceed 255. bytes
A=n | Indicates the maximum number of arrays that can be defined. 15. nx 16
The value of n cannot exceed 255. bytes
O=n | Specifies the maximum number of operators stacked during a 40. nx?2
prefix translation of an input expression. Subscripting of bytes
functions or arrays requires a double entry. The value of n
cannot exceed 255.
P=n | Specifies the maximum number of variables and constants 40. nx2
stacked during expression evaluation. The value of n cannot bytes
exceed 255.
For example:
SOPTIONS X,T=20 Line numbers will be listed for runtime
errors and up to 20 temporary variables
. will be available.
CALL (VAL)
END
SOPTIONS S=60 Sixty symbols and constants will be
SUBROUTINE MYSUB (X) allowed for the subroutine.
END
3-4 FORTRAN

SECTION 4

HOW TO COMPILE, ASSEMBLE, AND EXECUTE
A FORTRAN PROGRAM

4.0. INTRODUCTION

A FORTRAN source program describes a process in an algebraic-like language that people can understand.
Before the computer can interpret the program, the language must be converted twice: first to PTDOS
assembly language (a lower-level language than FORTRAN) and then to the binary form that the computer
can understand. This is represented graphically below:

source program

FORTRAN
compiler

assembly-language
program

PTDOS
assembler

binary object
code

The files corresponding to the three forms of a program are:

source program file
assembly-language file
binary object file

Once the binary object file has been produced, the program can be executed by simply typing the object file
name.
The steps involved in compiling, assembling., and executing a FORTRAN program are described in detail
below.

4.1. COMPILATION AND ASSEMBLY

The PTDOS FORTRAN compiler translates FORTRAN source code into PTDOS assembly-language code and
reports errors in syntax and semantics. The PTDOS assembler translates the assembly code into a form that
can be understood by the computer and inserts an Instruction to start execution when the object file name is

typed.

The general form of the FORTRAN command line for compiling and assembling a source program is:

4-1 FORTRAN

FORTRAN {option list, }source{<A>},{list},{assembly}, {object}

/ / | [|
Any or all of FORTRAN ALS-8 Assembly~ Object
the following: source file language file name
$=L,S=N,B=n,C=n file name file name

Destination for listing
and error messages

For example:
*FORTRAN FACTRL, , ,FOBJECT<CR> Compiles and assembles
FACTRL and writes the
executable program (object
code) on FOBJECT.
You can interrupt a compilation by pressing the MODE SELECT key.

The parameters must appear in the order shown in the general form. Items in the option list can be in any
order. The parameters are explained in more detail below:

4.1.1. Parameters in the FORTRAN Command Line
S=L

The S=L parameter specifies a long compilation. The long-compile option selects only those routines needed
by the program being compiled, minimizing the use of memory space.

If you do not specify S=L in the FORTRAN command line, you choose the quick-compile option. Using the
quick-compile option sacrifices memory space for speed. The quick-compile option greatly reduces assembly
time by loading the complete runtime package (all system subroutines and functions).

S=N

The S=N parameter specifies a search for compilation errors only. No assembly code is created. The S=N
parameter in the FORTRAN command line is identical to the N option in an OPTIONS declaration.

B=n

The B=n parameter sets the number of characters allowed in a statement to n (hexadecimal). The default
maximum statement size is 530 decimal or 212 hexadecimal. You can use the B=n option to override the
default when an INPUT BUFFER OVERFLOW compilation message is generated. n is a hexadecimal number
unless it ends with :D. For example, the following commands both increase the number of characters allowed
in a statement by 10:

*FORTRAN B
«*FORTRAN B

540:D, FCODE, ,ACODE <CR>
21C, FCODE, ,ACODE <CR>

C=n

The C=n option sets the maximum number of COMMON blocks allowed to n (hexadecimal). The default
number of COMMON blocks allowed is 15.

source<A>

Only one parameter is required to compile a FORTRAN program: the name of the source program file. For
example:

*FORTRAN PROGY <CR> Compiles the source code on file
PROGY.

4-2 FORTRAN

The compiler uses default values for parameters that are not specified. If you do not specify a list file, the
listing and error messages will be displayed on the terminal. If you do not specify an assembly file, the
compiler writes the assembly code on a file named $FORTASM. If you do not specify an object file no object
code is produced.

The characters <A> appended to a source file name indicate that the file is in ALS-8 format. For example:

*FORTRAN S=L,OLDFL<A>,,,0BJ <CR> Compiles the ALS-8 source file
OLDFL using the long-compilation
option.

list

The list file name is optional. It specifies the destination of the FORTRAN listing and compilation error
messages. If it is omitted, the listing and errors are displayed at the terminal.

assembly

This parameter specifies the destination of the assembly language code. If no file name is specified, the
compiler writes the assembly code on a file named $FORTASM.

Note:

To speed compilation time the compiler does not generate an end of file for the assem-
bly file. This could cause some large assembly files to be left on disk. You should purge
them periodically.

object

The last parameter specifies the name of the binary object file. This is the executable image file of the
program. If no file name is specified, no object file is produced.

4.1.2. Compilation Errors

During compilation the source program is scanned for errors in syntax or semantics. All errors are reported on
the list file as error messages or, if the G option was specified in the OPTIONS declaration, as error numbers.

Errors that prevent compilation are marked as fatal errors. A nonfatal error usually indicates an error in logic
and generates unpredicatable assembly code. A program that has an error should not be executed. The
UNREFERENCED STATEMENT LABEL message is only a warning and does not indicate that the program
should not be executed.

Appendix 5 lists all compilation error messages and their error numbers.

4.2. EXECUTION

You can execute the binary object file generated by the FORTRAN command by simply typing the file name.
PTDOS loads the program, beginning at location 100 hexadecimal (100H), and begins execution. For example,
after compilation and assembly to produce the object file FOBJECT, the program whose source code is shown
in unit 3.1 can be executed as follows:

Typed by the user

User: *FOBJECT <CR>
Program: ENTER A NUMBER 3 <CR>
3 FACTORIAL = 6
STOP END IN - MAIN
*

A program that has been interrupted or just finished execution can be restarted at location 100H (first, the
system closes all open files). For example:

4-3 FORTRAN

Typed by the user

User: *FOBJECT <CR>
Program: ENTER A NUMBER 2 <CR>
2 FACTORIAL = 2
STOP END IN -~ MAIN
User: *EXEC 100H <CR>
Program: ENTER A NUMBER

If a program is interrupted by a runtime error caused by a PTDOS operation, it cannot be restarted at location
100H. The runtime errors caused by PTDOS operations are FILE OP, I/0 ERR, and OPEN ERR.

Note:

Re-executing a program from location 100H does not reinitialize any variables initial-
ized with the DATA statement.

Because of the nature of console input (file #0), when a program is executed, any
subsequent PTDOS commands that follow the program name being executed are ig-

nored. —> BEWARE OF THIS <—

4.2.1. Runtime Errors

There may be errors in your program other than the syntax or semantics errors that are detected during
compilation. Errors detected during execution of a program are called runtime errors. Appendix 6 lists and
explains all runtime error messages. Runtime error messages are displayed during execution of a program. If
the X option was specified in an OPTIONS declaration, the number of the statement producing the error is
also displayed.

4.2.2. Large Programs
You might write a program that compiles and assembles correctly, but generates memory protect errors when

you attempt to execute it. If this happens, it is possible that the binary object file of your program is so large
that there is not enough room for it below PTDOS.

PTDOS is 12K long and usually resides at 9000 to BFFF. The video display module takes up 1K of storage
beyond that. (See page 3-4 of the PTDOS User’s Guide for a storage diagram.) For a system with 64K of
storage, there is extra space from D00l to FFFE.

You can use the extra space above PTDOS by using a second ORG instruction to split your large program into
parts that will fit below and above PTDOS.

One way to insert the ORG is to estimate what point in the FORTRAN source corresponds to the code that
exceeds the lower memory available. At that point insert:

GO TO 10

CONTINUE
* ORG 0DOO01H
10 CONTINUE

If the program still generates a memory protect error, place the ORG earlier in your program and try again.

Alternatively, you can view the assembly-language version of the program in an editor, find out where the
addresses approach 9000 (the beginning of PTDOS), and place a second ORG instruction there.

4-4 FORTRAN

SECTION 5

PTDOS FORTRAN STATEMENTS

5.0. INTRODUCTION

A computer program consists of statements that ultimately tell the computer what actions to perform. This
section describes in detail all of the PTDOS FORTRAN statements, categorizing them according to the func-
tions they perform. The types of PTDOS FORTRAN statements are:

Replacement

Program termination
Control

Error trapping

Input and output
Declaration

Subroutine and function
Copying source files

5.1. ASSIGNMENT STATEMENTS

An assignment statement assigns the value of an expression to a variable. The form most often used is:
variable = expression

where variable is a simple or subscripted variable.

For example, the following are valid replacement statements:

PROD = A * B
VECTOR(2,3) = 17.3

The equals sign is an assignment operator and does not denote equivalence. For example:
SUM = SUM + 1 Assigns to SUM its previous value plus one.

The expression in an assignment statement may be numerical, string, or logical.

5-1 FORTRAN

Assignment Statement

General form:

variable = expression Assigns the value of the

i expression to the variable.
simple or subscripted
variable

Examples:
X(I) = Y®%x2 - GAMMA

IV = 'MOD'
ANSWER = OLD .EQ. NEW

The assignment statement evaluates an expression and assigns its value to a variable. The variable can be

real, integer, or logical, and the value of the expression can be numerical, logical, or string.

Program Example:

X=120.3 -Assigns a real value to a real variable.

Y = 'CHARS' -Assigns a string value to a real variable.

Z = X .EQ. Y -Assigns 0 (logical value of . FALSE.) to a real variable.
TYPE X,Z

END

Logical values assigned to real or integer variables result in numerical values of 0 or 1.

A character string with as many as six characters can be assigned to a real variable, but only four characters
can be assigned to an integer variable. (You can store up to six characters in integer variables using input or

DATA statements, but not using the assignment statement.)

5.2. PROGRAM TERMINATION

The END, STOP, and PAUSE statements interrupt or terminate program execution. The END statement
ends execution of a routine and must be the last statement of every main routine, subroutine, function, or
BLOCK DATA subprogram. The STOP statement stops execution wherever it is placed in the program and
optionally displays a message. The PAUSE statement can be used to delay execution of a program until the

user presses a key on the terminal.

END Statement

General form:

END Terminates execution. Required
as the last statement of every
routine.

Example:

END

The END statement is required at the end of every main routine, subroutine. and function. When the END

statement is encountered, execution terminates and the following message is displayed:

FORTRAN

END IN - name
|
Name of the routine in which the END statement was encountered.

Program Example:

SOPTIONS X

CALL MYSUB

END <———— Note that program execution will end here.
SOPTIONS X

SUBROUTINE MYSUB

TYPE 'THIS IS MYSUB'

RETURN

END <«———— This statement is never encountered because of the

RETURN preceding it. It is required, however.

STOP Statement

General forms:
STOP {character string} Terminates program execution
STOP ({n} and displays the character
] string or integer, if
1 to 5 digit integer present.
Examples:
STOP
STOP 'An error occurred after DO loop.'
STOP 100

The STOP statement causes termination of execution wherever it is encountered in the program. If a character
string or an integer is included in the STOP statement, it is displayed when the STOP statement is executed.

Program Example:

ACCEPT 'ENTER A NUMBER BETWEEN 1 AND 10 ',N
IF (N .LT. 1 .OR N .GT. 10) GO TO 50

50 STOP 'YOUR NUMBER WAS NOT BETWEEN 1 AND 10
END

5-3 FORTRAN

PAUSE Statement

General forms:

PAUSE {character string} Interrupts execution and

PAUSE (n} displays the word PAUSE and

I the integer or character
1 to 5 digit integer string, if present.

Examples:

PAUSE

PAUSE 'DATA OUT OF SEQUENCE'

PAUSE 250

The PAUSE statement interrupts execution and displays the word PAUSE and an optional message or integer.
To continue execution, the user must press a key on the keyboard.

Program Example:

PAUSE 'PRESS ANY KEY TO CONTINUE'
TYPE 'SEE? EXECUTION CONTINUED.'
END

5.3. CONTROL STATEMENTS

The statements described in this unit let you control the order in which statements are executed. With the GO
TO, computed GO TO, and assigned GO TO statements, you can branch to a different part of the program.
The IF statements provide logical decision making. Looping is available through DO and CONTINUE state-
ments, which let you repeatedly execute a set of statements.

GO TO Statement

General form:

GO TO n Unconditionally transfers control
] to statement n.
statement
label
Example:
GO TO 150

The GO TO statement causes the indicated statement to be the next statement executed. You can use the GO
TO statement to branch to statements above or below it in the program. The transfer can be to any labelled
statement, including a FORMAT statement, which acts like a CONTINUE statement.

5-4 FORTRAN

Program Example:

SOPTIONS X
10 ACCEPT 'WHAT IS THE TOTAL SALE? ',SALE
IF (SALE .EQ. 0) STOP
TAX = SALE*.065
TYPE 'THE TAX IS ',TAX
GO TO 10
END

Computed GO TO Statement

General form:

GO TO (n1,n2,...),index Executes statement nl1 next
! i ! if index = 1, executes n2
statement positive next if index = 2, etc.
labels integer
variable
Examples:

GO TO (100, 70, 120),IVAL
GO TO (10,10,10,40,100),N

The computed GO TO statement lets you branch to one of several statements depending on the value of the
index. The value of the index must at least one and must not be greater than the number of statement
labels in parentheses or a runtime error will occur.

Program Example:

SOPTIONS X
ACCEPT 'ENTER MILEAGE: ' ,MILES

ACCEPT 'BUSINESS = 1, OTHER = 2 —- ?', ITYPE
GO TO (10,20),ITYPE

10 DEDUCT = .17 % MILES
GO TO 30

20 DEDUCT = .07 % MILES

30 TYPE 'DEDUCTION = ', DEDUCT
END

Assigned GO TO Statement

General form:

GO TO v, (n1,n2,...) Executes statement v next,
[NN where v is equal to one of
integer statement the labels in parentheses.
variable labels The value of v is assigned

by an ASSIGN statement.
Examples:

GO TO LABL, (10,20,30)
GO TO K, (100, 110)

5-5 FORTRAN

The assigned GO TO statement lets you transfer control to a variable statement label. The value assigned to
the variable must be one of the values listed in parentheses. The assigned GO TO statement is used with the
ASSIGN statement. described below

ASSIGN Statement

General form:

ASSIGN n TO v Assigns a statement label to the
/ ! variable used in an assigned GO TO
statement integer statement.
label variable
Example:

ASSIGN 10 TO LABL

The ASSIGN statement assigns a statement label to be used in an assigned GO TO statement. The variable in
the ASSIGN statement is the same as the variable used in the assigned GO TO statement. For example:
ASSIGN 20 TO LABL

IF (ANS .EQ. 0) ASSIGN 10 TO LABL

GO TO LABL, (10,20)

Arithmetic IF Statement

General form:

IF (exp) n1, n2, n3 Executes statement nl1 next if
I I I I the value of exp is negative,
integer, = statement executes n2 if the value of exp
real, or labels is 0, executes n3 if the value
logical of exp is positive.
expression
Examples:

IF (VALUE) 100, 10, 250
IF (INT/AEXP) 20, 30, 40
IF (ACT .EQ. EST) 10, 10, 320

The arithmetic IF statement evaluates an expression that may be any combination of integer, real, and logical
expressions. [t then transfers control to one of three statements based on the expression’s value compared to
zero.

5-6 FORTRAN

Program Example:

ADDNL = 0
ACCEPT 'ENTER MILEAGE: ',MILES
IF (MILES - 15000) 10, 10, 20

20 ADDNL = (MILES - 15000)#%.10
MILES = 15000

10 FRST15 = MILES % .17
DEDUCT = FRST15 + ADDNL
TYPE 'MILEAGE DEDUCTION = ',DEDUCT
END

Logical IF Statement

General form:

IF (exp) statement Executes the specified statement

| L__ if the value of exp is nonzero.
any ex-— Any
pression FORTRAN statement except
DO, END, or another

Examples: logical IF

IF (IVAL) GO TO 20

IF (ANS - 300) STOP

IF (X .GE. Y) RETURN

The logical IF statement evaluates an expression and, based on its value, does or does not execute a specified
statement. If the value is . TRUE. (nonzero) the statement within the IF statement is executed and execution
continues with the next statement in sequence. If the value of exp is .FALSE. (zero) the statement within

the IF statement is not executed and execution continues with the next statement in sequence.

Program Example:

ACCEPT 'WHAT IS THE MONTH? ' ,(MONTH

IF (MONTH .EQ. 1 .OR. MONTH .EQ. 10 .OR. MONTH .EQ. 11)
*TYPE '21 WORK DAYS'

IF (MONTH .EQ. 2) TYPE '19 WORK DAYS'

IF (MONTH .EQ. 3 .OR. MONTH .EQ. 8) TYPE '23 WORK DAYS'
IF (MONTH .EQ. 4 .OR. MONTH .EQ. 7 .OR. MONTH .EQ. 9
*.0OR. MONTH .EQ. 12) TYPE '20 WORK DAYS'

IF (MONTH .EQ. 5 .OR. MONTH .EQ. 6) TYPE '22 WORK DAYS'
END
5-7

FORTRAN

DO Statement

General form:

DO n index = v1, v2 {,increment}

J l I I The statements between
state the DO statement and
ment nonsub- statement n are executed
label scripted constants or repeatedly as the value
variable nonsubscripted of index increases or
variables decreases from v1 to v2
in steps of 1 (or in-
crement, if present).
Examples:

DO 100 I =1, 10
DO 50 IND = A,Z,.01
DO 120 A = START, END, -1.5

The DO statement lets you execute a set of statements an indicated number of times. The index increases or
decreases at each repetition of the loop. Its first value is v1, subsequent values are determined by adding one
or the optional increment, and the final value is v2.

The loop is executed at least once regardless of the values of index, v1, v2, and increment. The
values of all arguments in the DO statement can be positive or negative, integer or real. If the increment is
negative, the value of index decreases from v1 to v2.

You can change the value of the index within the loop, thus changing the number of times the loop is
executed. For example, the loop below is executed once:

Do 10 A =1, 3.5, .5 Notice that fractional step sizes
A =4 are allowed.
10 CONTINUE

After the index reaches or exceeds its final value, whether by increments or by assignment within the loop,
the next statement in sequence is executed.
Program Example:

DO 10 A = 0.1, 1, .1
Y = SIN(A)

10 TYPE 'SIN ',A,' = ',Y
END

Nested DO Loops

You can include DO loops within other DO loops provided you do not overlap parts of one loop with another.
This practice is called nesting DO loops. For example:

5-8 FORTRAN

DIMENSION ARAY(3,4)
— DO 10 I = 1,3

DO 20 J I,4 1s legal.
l ACCEPT '?',ARAY(I,J)
20

CONTINUE
——10 CONTINUE
END

—eD0 10 A = 1,3
DO 20 B = 1,3,.5
PROD = A % B 1s not legal.
10 TYPE PROD
20 CONTINUE
END
Nested DO loops can end with the same statement, as shown below:

)

DO 10 A = 1,3
DO 10 B = 1,3,.5 is legal.
PROD = A%xB

10 TYPE PROD
END

When a DO loop is nested inside an outer DO loop, all iterations of the inner loop are performed for each
iteration of the outer loop. For example, in the program shown above, for each value of A, B takes the values

1, 1.5, 2, 2.5, and 3. The depth (or number) of DO loops that can be nested is set by the D= option of the
OPTIONS declaration.

CONTINUE Statement

General form:

CONTINUE Takes no action. Used as a
reference point for control
statements.

Example:

CONTINUE

The CONTINUE statement is a nonexecutable statement that can be placed anywhere in the program. It is
often used as the last statement of a DO loop.

5.4. ERROR TRAPPING

Normally, an error occuring during execution of a FORTRAN program causes a runtime error message to be
displayed. Using the routines below, you can change this default condition and control what happens when an
€eITor occurs.

5-9 FORTRAN

ERRSET Statement

General form:

ERRSET n, v Transfers control to statement n if
/1 a runtime error occurs. Variable
statement wvariable v contains the error code.
label
Example:

ERRSET 150, KODE

The ERRSET statement causes control to be transferred to statement n if a runtime error occurs. The
ERRSET statement can be used only if the Q option was specified in the OPTIONS declaration for this
routine. Runtime error messages are not printed for errors trapped with the ERRSET statement.

If a runtime error does occur. an error code will be stored in the v argument, indicating the nature of the
error. The error codes are:

1 Integer overflow
2 Conversion error
3 Parameter count error
4 Computed GO TO index out of range
5 Overflow
6 Division by zero
7 Square root of a negative number
8 Logarithm of a negative number
9 Call stack PUSH error (too many recursive subroutine calls)
10 Call stack POP error
11 File operation error
12 Illegal logical unit number
13 Unit already open
14 Open error
15 Unit not open
16 Set unit (drive) error
17 Line length too long
18 Format error
19 Input/output error during read or write
20 Invalid character during input
21 lnvalid input/output list
22 Assigned GO TO error

If more than one ERRSET statement appears in a routine, the latest one executed is in effect.

If a runtime error occurs, the effect of the ERRSET statement is cleared after control transfers to the
specified label. You must then execute another ERRSET statement if you want to continue trapping errors.
For example:

5-10 FORTRAN

SOPTIONS Q
ERRSET 110, IERR

1710 TYPE 'ERROR ', IERR, ' OCCURED'
ERRSET 110, IERR

END

ERRCLR Statement

General form:
ERRCLR Clears the effect of the ERRSET
statement.
Example:
ERRCLR

The ERRCLR statement clears the effect of the ERRSET statement in effect.

DUMP Statement

General form:

DUMP /ident/ output list Displays ident followed by
I ! items in the output 1list
10-character Variable names, when a runtime error that
identifier character is not trapped occurs.
strings, array
names or elements,
and/or implied DO loops

Example:

DUMP /AFTER LOOP/ 'INDEX = ',I

The DUMP statement is used to display information when a runtime error that is not trapped by the ERRSET
statement occurs. If more that one DUMP statement is present, the latest one executed is in effect.

5.5. INPUT AND OUTPUT

Input and output statements transfer data to and from a program. A program can receive input from the
terminal or from a disk file. and can send output to the terminal or to a disk file.

Input and output can be symbolic (data is represented as ASCII characters) or binary.

The types of input and output are represented graphically below:

5-11 FORTRAN

Binary ~——————————————Symbolic

Free-format Formatted

5.5.1. Free-Format Terminal Input and Output

Free-format input means that data values can be entered at any character position in a line, and one value is
distinguished from the next by a separator. Blanks between values are ignored and blank lines are ignored. In
free-format input, the comma and carriage return both act as separators. During free-format input, integer
values must be entered as one-to eight-digit integers and real values can be entered in any of the following
forms:

Examples:
Integer 1, 2000, 40
Floating point 2.4, 5791.76
Exponential .2 E15, -7.512E-3
For example:
Program: ENTER THREE NUMBERS: 13.2 <CR> The user enters one of the
User: .26 E3, 300 <CR> three values on one line and

two on the next.

During free-format output, numerical data is displayed according to its type. Ten character positions are
allowed for each integer and 18 character positions are allowed for each real number. Real numbers are
displayed in exponential format. The field specifications for free-format output for integers and real numbers
are I10 and E18. 8, respectively.

Free-format character strings are displayed exactly as they appear in the output statement.
During free-format output, values that extend past column 63 are placed on the next line.

The ACCEPT and TYPE statements perform free-format terminal input and output exclusively. The READ
and WRITE statements perform free-format terminal input and output when they are used with the appropri-
ate arguments.

In the READ and WRITE statements, a second argument of asterisk (%) specifies free format. The first
argument is the unit number. Unit number 0 is reserved for terminal input and unit number 1 is reserved for
terminal output. Thus:

READ (0,*) input list is identical to ACCEPT input list
WRITE (1,%) output 1list is identical to TYPE output list

5-12 FORTRAN

ACCEPT Statement

General form:

ACCEPT input list Reads values from the ter-
I minal and assigns them to
May include variable items on the input list.

names, array names,
array elements, implied
DO loops, character strings.

Examples:

ACCEPT ALPHA, BETA, GAMMA
ACCEPT 'X = ',X

ACCEPT ARAY(4,1), VAL
ACCEPT (VALS(I), I = 1,3)

The ACCEPT statement reads one or more numerical values from the terminal and assigns them to items in
the input 1ist. The values entered at the terminal must be separated by commas or carriage returns.

When an ACCEPT statement is executed, there is a pause and the program waits for the user to enter values
at the terminal. It does not continue with the rest of the program until a value has been entered for each item
on the input list. When the ACCEPT statement waits for input, the user must enter as many values as there
are items read by a single execution of the statement. The values can be entered on one or more lines. For
example:

ACCEPT '?', X,Y,Z When the question mark appears, the user can
enter values for X, Y, and Z one per line, all on
one line, or mixed.

DO 10 I = 1,3
10 ACCEPT VAL(I) This statement will only read one value from each
line typed at the terminal.

If the input 1ist of an ACCEPT statement includes a character string, the string is displayed when the
statement is executed. This feature is useful for prompting for input. For example:

ACCEPT 'ENTER THE COST: ', COST

If an array name is included in the input l1ist. the ACCEPT statement reads values for every element of
the array. The input list can also include array elements. such as AR (3,5}, to read a value for one
element only. To read a specified part of an array. vou can include an implied DO loop, which works very
much like the DO statement. An example is:

ACCEPT (A(I),I=1,10) Reads 10 values and assigns them to the first
ten elements of array A.

These features for reading array values are described more fully under the READ and WRITE statements in
section 5.4.

5-13 FORTRAN

Program Example:

SOPTIONS X
ACCEPT 'ENTER VALUES FOR X, Y, & 2: ',X,Y,2
SUM = X+Y+2
TYPE 'X + Y + Z2 = ', SUM
END

When this program is executed, the following interaction occurs (assuming the object file for this program is
named TOBJ):

User: TOBJ <CR>

Pngnmr ENTER VALUES FOR X, Y, & Z: 70.2 <CR>»
User: 20.2, 11.4 <CR>

Program: X +Y + 2 = 0.170190000E 003

STOP END IN - MAIN

Notice that the user entered only one value on the first line and the program waited until all three values were
entered.

TYPE Statement

General form:

TYPE output list Displays items in the output list
I on the terminal.

May include variable

names, character strings,

array names, array elements,

and implied DO loops

Examples:

TYPE SALARY, TAX

TYPE 'THE TOTAL IS ', TOTAL
TYPE TABL

TYPE TABL(2,3),TABL(2,4)
TYPE (VECTOR(J1),J1=1,5)

The TYPE statement displays values on the terminal. The items in the output list are displayed
sequentially.
Note:
You cannot include operators or function names in the TYPE statement.

Program Example:

DIMENSION ARAY (3)
TYPE 'THIS IS AN EXAMPLE OF OUTPUT BY THE TYPE & STATEMENT.'

ARAY (1) = 17.2

ARAY (2) = 1

ARAY (3) = 3.22

TYPE (ARAY(I),I=1,3)
END

5-14 FORTRAN

5.5.2. Formatted Input and Output

You can specify the exact format of each input or output value using the FORMAT statement. The FORMAT
statement describes the format of data to be read or written by the READ or WRITE statement. For example:

WRITE (1,130) INC These statements write the value of INC as a
130 FORMAT (I5) five-digit integer.

During formatted input, FORTRAN reads a record (up to a carriage return) and then pads the record with
blanks on the right until the record agrees with the total number of characters being read. This padding takes

place for all field specifications and may generate a record as large as 250 characters. For example:

READ (0,3) I,J
3 FORMAT (I6,I3)

These statements read nine characters from each input record as shown below:

input record Results

987654321061 <CR> I = 987654 J = 321
bbb01b3 <CR> I =10 J =0
bbbb9 <CR> I = 90 J 0
<CR> I =20 J =20

(where b represents a blank)

During formatted input or output the maximum number of characters in a record is 250.

FORMAT Statement

General form:

FORMAT (field specl1, field spec2, ...) Describes the
I 1 sizes, types, and
field specifications positions of data

values to be read
or written.

Examples:
10 FORMAT (A6, I4)

100 FORMAT(3F10.1)
50 FORMAT (10X, E9.2, 2X, A10)

The FORMAT statement is a nonexecutable statement that defines how data values are to be read or written. A
FORMAT statement must have a statement label so that it can be referred to by a READ or WRITE statement.

The FORMAT statement lets you define the size and type of data to be read or written. In addition, you can
select the fields to be read or the columns on which to write values. The exact descriptions of data fields is
accomplished with field specifications, documented below.

Field Specifications

PTDOS FORTRAN allows the following field specifications in FORMAT statements:

(In the field specifications, w represents field width and d represents the number of digits following the
decimal point.)

5-15 FORTRAN

Field Spec.

string
Iw
Fw.d
Ew.d

Description Exceptions

Character string Output only
Integer

Floating point

Exponential

Alphanumeric

Logical

Skip spaces

Skip record

No carriage return Output only

The I, F, E, A. and L field specifications describe the sizes and type of data to be read or written.

If a number cannot be written in the specified field width, the entire field is filled with asterisks to indicate

the error condition.

Blanks read with the I, F, E, or L specifications are treated as if they were zeros.

Field Specifications: string

A character string in a FORMAT statement causes those characters to be output when the WRITE statement
refering to the format is executed. This is a convenient replacement for the Hollerith specification of ANSI

FORTRAN.

You can specify the hexadecimal code for any character in a character string by enclosing the hexadecimal

code in back slashes. For example

WRITE(1,100)
100 FORMAT ('This is

The hexadecimal code for an exclamation mark is 21, so the above statements display:

This is importan

important\21\"')

t!

Placing an ampersand in front of a character in a string causes the character to be treated as a control

character. For example:

WRITE(1,10)

10 FORMAT ('THIS IS CONTROL P: &P')

These statements output the characters THIS IS CONTROL P : followed by control P.

To output an ampersand, use two ampersands together. For example:

100 FORMAT ('THIS && THAT')

Field Specifications: Iw

This specification reads or writes integer digits. Only integer digits or a sign can be read with an I field. For

example:

READ(0,100)I,J,K
100 FORMAT(I5,I3,I1)

If these statements are used to read the record 0010001001, 100 is assigned to I, 10 to J, and O to K.

When reading data with the I specification, the values must be right justified in the field with leading blanks

Or zeros.

5-16

FORTRAN

A = 30.2

B = 1000

cC =9

WRITE(1,10)A,B,C
10 FORMAT (I3,I5,I1)

These statements write: b30b10009 (where b represents a blank)

Field Specifications: Fw.d

The F field is used to read or write a floating-point number. The field width w includes the number of digits
preceding and following the decimal point, one position for a negative sign if the number is negative, and one
position for the decimal point. For example:

F10.3 Indicates the numencal format
s00000.000
|
sign

During input the F field reads w characters. If there is no decimal point in the characters read, a decimal is
inserted d digits from the right. A decimal in the input value overrides the field specification. For example:

READ (0,150)X,Y
150 FORMAT (F7.2,F5.1)

If the input line is —123456789.012, these statements read —123456 and assign —1234.56 to X, then
read 789.0 and assign 789.0 to Y.
During output the F field converts a value to the form indicated. For example:

X = 23.7

Y = 100

WRITE (1,10) X,Y
10 FORMAT(F10.2,F5.1)

These statements display bbbbb23.70100 .0, where b represents a blank.

Note
Zero is always printed as 0.0. If it appears in a different form during output (such as
0.00000), the value was not exactly zero and digits had been truncated.
Field Specifications: Ew.d

The E field reads or writes a real value in exponential form:
mantissa E exponent
The value is the mantissa multiplied by ten to the power exponent. For example, the value of 10 E 2

15 100.

The field width w includes the number of digits preceding and following the decimal point. one position for a
negative sign if the number is negative, and five positions for E and its exponent. For a positive number w
must be at least 7 greater than d and for a negative number w must be at least 8 greater than d.

During input, the E field is equivalent to an F field: that is, it reads w characters and inserts a decimal point
d digits from the right if there is no decimal in the characters read. A decimal point in the input value
overrides the E format. Thus, it does not cause an error to read data in the F format using the E specification.

5-17 FORTRAN

Example:

READ(0,100) A,B
100 FORMAT(E10.2,E8.1)

If the input line is 123456789012345678, these statements assign 0.12345678E 008 to A and
0.12345678E 007 to B. If the input line is 1.2345 002.3000, these statements assign the values
0.12345E 001 toAand 0.23E 001 to B.

During output the E field converts values to exponential format. For example:

X = 300
Y = -528.2
WRITE (1,10)X,Y
10 FORMAT(E10.2,E9.1)

These statements print the line
0.30E 003-0.5E 003

Notice that E9. 1 was the smallest E field possible for printing a negative value with one significant digit.

Field Specifications: Aw

The A field reads or writes w ASCII characters. Up to six characters may be read or written for each variable
name. On input if w is less than 6, then w characters will be placed in each variable, left justified and padded
with blanks on the right. On output, w characters are written starting with the leftmost character in the
variable. For example:

DIMENSION A(8)
READ(1,10) (A(I),I=1,8)
10 FORMAT (8A1)

If the input line is ALPHABET, these statements read one character for each element of the array 2. A (1)
=A, A(2) =L, A(3) =P, etc. (Arrays are discussed in section 5.6.2)

The A field can be used to output character-string values stored in numerical variables, but not numerical
values.

Any byte can be input or output using an A field, even if it is not a character.

Field Specifications: Lw

The L field treats values read or written as logical values.

During input the L field scans w characters until a T or F is found. The T or F can be located anywhere in
the field and all characters following the T or F are ignored. If the first nonblank character is not a T or F,
an error occurs. A completely blank field results in a false value. For example:

READ (0,10) LOG1, LOG2
10 FORMAT(L5,L3)
If the input line is bbbTOTAL, two true values are returned and LOG1 and LOG2 are both set to 1.
During output the L field prints the letter T if the value being output is nonzero (logically true) and prints

the letter F if the value is zero (logically false). For example:

X = 20

Y =0

WRITE(1,100)X,Y
100 FORMAT(L3,L1)

These statement print the line bbTF, where b represents a blank.

5-18 FORTRAN

Field Specifications: wX

The X field spaces over w column§ with a maximum of 250 character positions allowed.
During input w characters of the input record are skipped. For example:
READ(0,120)I,J
120 FORMAT (2X,I2,I3)
If the input line is 1234567, these statements assign 34 to I and 567 to J.
During output the X field prints w blanks. For example:
M = 273

WRITE(1,10)M
10 FORMAT (10X, 'THE GAIN = ',3I)

These statements print the line:

THE GAIN = 273

Field Specifications: /
The slash causes a READ or WRITE statement to skip to the next line before proceding.

During input / causes reading to continue at the beginning of the next input record. For example:

READ(0,10) A,B,C
10 FORMAT (2F8.1/F9.2)

Suppose the input records to be read are:

023.5 1.30 2.100000

50.600 18.000000

The statements above read two values from the first record and one value from the second. They assign 23.5

toA, 1.3toB,and 50.60 to C.

During output / generates a carriage return and output continues on a new line. For example:

I = 20
J = 30
K = 40

WRITE (1,100)I,J,K
100 FORMAT (I13/13,13)

These statements print:

20
30 40

Field Specifications: Z

The 2 field is used only during output. Its presence indicates that a carriage return is not to be written at the
end of the record.

5-19 FORTRAN

Example:

A = 23.782

B = 5543.3

WRITE (1,120)A

WRITE(1,100)B
120 FORMAT (E10.2,Z)
100 FORMAT (F10.1)

il

These statements print the following line:

0.23E 002 5543.3

Repeating Field Specifications

You can repeat a field specifications in a FORMAT statement by preceding it with the number of repetitions.
For example. 315 means read three values as five-digit integers. The specification 3 (I5) alse means read
three values as five-digit integers, but this form sometimes has a different effect than 3I5. The following
FORMAT statements are equivalent:

100 FORMAT (215, 3F10.2)
100 FORMAT (I5,I5,F10.2,F10.2,F10.2)

When the field specification to be repeated is enclosed in parentheses., the count preceding the parentheses is
called a group count. The following are examples of group counts:

10 FORMAT (3(I5))
100 FORMAT (2(F10.2,I3))
150 FORMAT (13,(I2,I5))

When the group count is omitted, it is assumed
to be 1.

The program below displays values using a group count of 2 in the FORMAT statement:

N = 33
DO 100 I = 1,2
X(I) =1
Y(I) =10 + I
100 CONTINUE
WRITE (1,10) N, X(1),Y(1),X(2),Y(2)
10 FORMAT (IS5, 2(I3,F5.1)
END
This program displays:
bbb33bb1b11.0bb2b12.0
In this example. the format:
10 FORMAT (I5, 2(I3,F5.1))

has the same effect as:

10 FORMAT(I5, I3,F5.1,I3,F5.1)
The difference between these two FORMAT statements occurs when the input list of the READ or WRITE
statement has more items than there are field specifications in the FORMAT statement.

In a FORMAT statement without group counts. control goes to the beginning of the FORMAT statement for
reading (writing) of additional values. In a FORMAT statement with group counts, additional values are read
according to to last complete group.

5-20 FORTRAN

For example:

READ(2,10) N, (A(I),I=1,100)
10 FORMAT (I5/(4E12.2))

The FORMAT statement reads a value for N from the first five columns of the current record. The./ indicates
the end of the record and reading continues with the next record. Four values are read from that record and
the end of the FORMAT statement is reached. The statements above then cause the next record to be read. In
the FORMAT statement, control returns to the group count (1) preceding the group (4E12.2). The rest of
the file is read four values from each line.

Thus, you can use group counts to repeat a group of field specifications for the rest of a read operation after
the initial pass through the FORMAT is finished.

Group counts can be nested to a maximum depth of two. For example:

FORMAT (2(E14.2,3(I2,2I5))) is legal
but
FORMAT (2(E14.2,3(I2,2(I5)))) is not legal

In the case of nested group counts, the last outer group is repeated for reading additional input. For example:
FORMAT (I5,2(I2,3I4))
FORMAT (E12.1,3(I5,2(I1)))

FORMAT (E12.1,I5,I1,I1,I5,I1,I1,I5,I1,I1)

t

The arrows show where repetition begins after the first pass through the FORMAT statement.

5.5.3. File Input and Output

The READ and WRITE statements described in this unit let you read data from and write data on files. Before
reading or writing a file, you must open the file and associate a unit number with the file name. This is a
number for file reference and should not be confused with disk unit numbers.

File Unit Numbers

The file unit numbers that may be used to refer to FORTRAN data files depend on your PTDOS configura-
tion. If your PTDOS configuration allows fewer than 18 files, 16 FORTRAN unit numbers are available. They
are 0, 1, ..., 15. You can then use any unit number between 0 and 15, where units 0 and 1 refer to the
terminal. This does not necessarily mean that there are enough PTDOS files available so that you can open all
16 files, however.

If the system configuration allows for more than 17 files, the number of FORTRAN units available is one less
than the number the system is configured for. For example, if your PTDOS configuration allows 35 files,

there are 34 FORTRAN units available (0, 1, ..., 33).

The maximum number of FORTRAN units that can be available is 128. Unit numbers 0, 1, ..., 127 are
available when the system is configured for 129 or more files.

Opening Files

The OPEN subroutine is a system routine for opening files. This routine is discussed in more detail in the
next section, but it must be introduced here since it is a necessary part of file input and output. The form of
the subroutine call is:

CALL OPEN (unit,file name{,buffer})

The OPEN subroutine associates a logical unit number (other than 0 or 1) with a PTDOS disk file name.
In the last argument. you can specify a buffer address or request dynamic buffering (see section 6.1.1 for
more information).

5-21 FORTRAN

An example of opening and reading from a disk file follows:

) Logical unit number

’ /

CALL OPEN(2, 'INVEN')

DO 10 I = 1,1000

READ (2,%,30)IORD <--Reads from disk file INVEN
IF (IORD .EQ. 79421) GO TO 20

10 CONTINUE
GO TO 30

20 TYPE 'ORDER NO. 79421 IS ON RECORD NO. ',T
STOP

30 TYPE 'ORDER NO. 79421 NOT FOUND'
END

READ Statement

General form:

READ (unit, format {,end-of-file, error}) input list
| | | 1 1
unit 1label of a statement labels May include
number FORMAT state- variables,
ment, %, Or array names,
null array ele-
ments, implied
Reads values for each loops, or
item on the input list strings

from the specified unit
using the specified format.

Example:

READ (0,%) 'What are the values? ', VAL1, VAL2
READ(3,100)EL(2,3),A

READ(2,10,150,320) ARAY
READ(5,150,,110) (TABL (I),I=2,5)

The READ statement reads values for each item in the input 1ist. It reads the values from the specified
unit according to the FORMAT statement whose label is the second argument. If the second argument is *,
the values are read in free format. If the second argument is null, the values are read as binary.

If an end of file is encountered while data is being read, control transfers to the statement whose label is given
as the third argument. The fourth argument indicates where control is to transfer if a read error (other than
end of file) occurs.

Items in the input list can be simple variable names, array names, array elements, or implied DO loops.
If you are reading from the terminal (unit = O or any file opened using $CONIN), you can include
character strings in the input list. This is useful when prompting for input.

During input one value is read and assigned to each variable name or array element. If an array name appears
in the list, the program reads every element of the array.

An implied loop is an abbreviated DO loop specifying which elements of an array are to be input. Its form for
a one-dimensional array is:

5-22 FORTRAN

(array name (var),var=nl,n2,incr)

variable step size

first wvalue

last wvalue

where n1, n2, and incr can be constants or nonsubscripted variables.

For example:

READ(0,10) (X(IND) ,IND=1,3) Reads three values and assigns them to X (1),
X(2), and X(3).

Implied DO loops can be nested to any depth. That is, one can be included within another. For example:

READ(2,100) ((ARAY(I,J),I=1,4),J3=1,30,2)

In this example the inner loop (I=1, 4) is performed for each iteration of the outer loop (3=1,30,2).

Program Example:

SOPTIONS X
CALL OPEN(5,'FILM')
READ (5,10,,100)A,B,C

10 FORMAT (3F10.2)

100 STOP 'ERROR IN READING FILE ''FILM''"'

END

WRITE Statement

General form:

| | ! |
unit number FORMAT statement labels
statement
label, *,
or null

Writes the values of items
in the input list on the
specified unit using the
specified format.

Examples:

WRITE(1,%) 'The answer is ', ANSWER
WRITE(2,10,,150) 'AMOUNT ', A(1,4)
WRITE (2,10) TABLE

WRITE(1,100) {(A{(M,N),M=1,3),N=1,4)

WRITE (unit, format {,end-of-file, error}) output list

|
May include vari-
able names, array
names, array ele-
ments, implied DO
loops, and
character strings

The WRITE statement writes values for each line in the output 1ist on the specified unit according to
the specified format. The third argument tells where control is to be transferred if an end of file is encoun-

5-23

FORTRAN

tered. If an error (other than end of file) occurs during output, control tranfers to the statement label given in
the fourth argument.

Items in the output list can include simple variable names, array elements or names, and implied loops.
See the READ statement for a discussion of these items. Character strings can be included in a WRITE
statement regardless of the output unit.

Note:

You cannot include operators or function names in the output list of a WRITE statement.

Program Example:

SOPTIONS X,G
CALL OPEN (3, 'SQUARE')
DO 100 I=1,100,.5
A = I%xkx2
100 WRITE (3,10) A
10 FORMAT (F10.2)
END

REWIND Statement

General form:
REWIND unit Moves the pointer for the next
I read or write to the beginning
unit number of the file.
Example:
REWIND 3

The REWIND statement causes the next input or output operation to occur at the beginning of the file.

BACKSPACE Statement

General form:

BACKSPACE unit Positions the file at the
| beginning of the previous
unit number record.
Example:

BACKSPACE 3

The BACKSPACE statement causes the next read or write to occur at the beginning of the preceding record.
For example, when part of the second record below has just been read, executing a BACKSPACE statement
means the value 12 will be read next.

12, 13, 19
20, 50, 72

5-24 FORTRAN

ENDFILE Statement

General form:
ENDFILE unit Writes an end of file on the
specified unit.
unit number

Example:

ENDFILE 3

The ENDFILE statement writes an end of file on the specified unit at the current read or write position.
Any data beyond that position is lost.

Program Example:

CALL OPEN(2,'DAT1')

DO 10 I =1, 1000

READ (2,%)S

IF (S .GE. 1000) GO TO 20
10 CONTINUE

STOP
20 ENDFILE 2

END

5.5.4. Dynamic Formatting

You can include statements in your program that allow a user to enter a format for input or output at
execution time. The format entered by a user should be read in your program using A6 format. Using A6
format causes the input values to completely fill the computer words. The characters making up the format
should be stored in an array of real or integer variables.

In the program that performs dynamic formatting, substitute the array name for the format number in the
READ or WRITE statement. An example of this follows:

DIMENSION FORM(10)

READ(0,10) 'ENTER THE DATA FORMAT :', FORM
10 FORMAT (10A6) <«————This field specification can

CALL OPEN (4, 'TEST') read up to 60 characters.

READ (4,FORM) A,B,C

WRITE (1,FORM) A,B,C

When executed, this program reads the first three values from file TEST in a format entered at the terminal.
It then writes the values on the terminal in the specified format. An example of execution follows (the object
file is named XOBJ):

User: *XOBJ <CR>
Program: ENTER THE DATA FORMAT: (I8/I8/I8) <CR>
564123 ' '
666 \
1112772 Typed by the user

STOP END IN - MAIN

Notice that the user enters the entire argument list for a FORMAT statement, including the parentheses.

5-25 FORTRAN

5.5.5. Binary Input and Output

Binary input and output saves storage space, though it is sometimes less convenient than symbolic input and
output. All that is necessary to write binary data on a file is to leave the second argument of the WRITE
statement blank. For example:

WRITE (5) (BINARY(I),I=1,100) Writes binary values on unit 5.
The values are written in binary format, six bytes for each value. This form of output saves time because the

values are written exactly as they are stored in memory.

To read a file of binary data, leave the second argument of the READ statement null. For example:
READ (2,,100,520)A

The input items are read as six-byte values and stored directly in memory (no conversion is necessary).

5.6. DECLARATION STATEMENTS

Most statements in a FORTRAN program are execution statements: that is, they perform an operation. Decla-
ration statements do not perform an operation, but contain information essential to the program’s operation.
For example, END is a declaration statement that defines the end of a routine. Another declaration statement
that has been discussed is the FORMAT statement.

In addition to these declaration statements, there are declaration statements that specify the types of variables,
assign values to variables, and set aside storage space for arrays.

5.6.1. Type Declarations

PTDOS FORTRAN automatically assigns a type of integer to variable names beginning with I through N and
real to names beginning with A through H and O through Z. You can override this implicit type setting by
using the type declaration statements. The types that can be assigned to variables are INTEGER, REAL, and
LOGICAL.

INTEGER Statement

General form:

INTEGER vari, var2, ... Declares that var1, var2, etc.
are integer variables.
variables
or array dimensions
Examples:

INTEGER X,Y,2
INTEGER A,B,ARAY(3,4)
INTEGER CNT (20)

The INTEGER statement causes the variables listed to be integer variables regardless of their names. You
can also declare dimensions for integer arrays in the INTEGER statement. Arrays are discussed in the next
unit.

Program Example:

INTEGER ANSWER
ANSWER = 3.3 % 2.0
TYPE ANSWER

END

When executed, this program displays 6, not 0.66000000E 001, because ANSWER is an integer variable.

5-26 FORTRAN

REAL Statement

General form:

REAL var1, var2, ... Declares that varl1, var2, etc.
| I are real variables.
variables or
array dimensions

Examples:

REAL IVAL, LINK
REAL IDS(15),NUM

The REAL statement causes the variables listed to be real variables regardless of their names. You can also
declare dimensions for real arrays in the REAL statement. Arrays are discussed in the next unit.

Program Example:

REAL IANS

IANS = 7 % 2.3
TYPE IANS

END

This program displays 0.16100000E 002, not 16, because IANS is real.

LOGICAL Statement

General form:

LOGICAL varl, var2, ... Declares that varl, var2, etc.
I I are logical variables.
variables
or array dimensions

Examples:

LOGICAL IANS, VAL
LOGICAL COMP (3), X

The LOGICAL statement is equivalent to the INTEGER statement. You can assign the logical values
-TRUE. and .FALSE. to variables declared as logical, but PTDOS FORTRAN also allows numerical vari-
ables to have logical values. Thus, variables declared as LOGICAL are no different from variables declared as
INTEGER. The LOGICAL statement allows compatability with other FORTRANS.

You can also dimension arrays in the LOGICAL statement. Arrays are discussed in the next unit.

5-27 FORTRAN

IMPLICIT Statement

General form:

IMPLICIT type (letter list) Declares a default

/ I type for the variables
INTEGER, REAL One or more beginning with the
or LOGICAL alphabetic indicated letters.

characters or
spans of characters
indicated by charl1-char2

Examples:

IMPLICIT INTEGER (0-2),REAL (A-C,L)
IMPLICIT REAL (I,L-N),INTEGER (X)

The IMPLICIT statement changes the default type of variables beginning with the indicated letters. Individ-
ual letters and letter spans are separated by commas. Letter spans must be in ascending order. For example,
(A-L) is valid but (L-3) is not.

If used, the IMPLICIT statement MUST be the first statement in the routine except for comments. That is, it
must be the first statement of a main routine or immediately follow the SUBROUTINE, FUNCTION or
BLOCK DATA statement if used in a subprogram.

Program Example:

IMPLICIT REAL (A-Z) All variables are real.
DO 10 I=0,1,.1
K = SIN(I)
10 TYPE K
END

5.6.2. Arrays

In PTDOS FORTRAN an array is a collection of values that are referred to by the same name. Each value is
an element of the array and is specified by subscripts. For example, if VEC is an array with three elements,
you can refer to the individual elements of VEC as follows:

VEC (1) refers to the first element.
VEC (2) refers to the second element.
VEC (3) refers to the third element.

Subscripts can be real or integer expressions. Real values are truncated before use.

An array can have more than one dimension. An array with two dimensions can be pictured as an arrange-
ment of rows and columns. For example, ARAY is a 2 by 3 array with the following elements:

32 60
15 50
10 22

Elements of ARAY are referred to with two subscripts, the first changing more rapidly than the second. Thus:

5-28 FORTRAN

ARAY (1,1) = 32

ARAY(2,1) = 60
ARAY (1,2) = 15
ARAY (2,2) = 50
ARAY(1,3) = 10

ARAY (2,3) = 22

The elements of a multi-dimensioned array are stored so that the first subscript varies most rapidly and the
last subscript most slowly. For example, the sequential arrangement in storage for a 2 * 2 * 2 array named A
1s:

A(1,1,1),A(2,1,1),A(1,2,1),A(2,2,1),
A(1,1,2),A(2,1,2),A(1,2,2),A(2,2,2)

You can use the DIMENSION statement to assign extra space to a variable name so that it can contain an
array of values. Every array or subscripted variable must be declared in a DIMENSION statement or a type
declaration before the first executable statement of the routine.

Note:

Subscripted variables cannot be used as subscripts. For example, A (X (1)) is not

valid.

DIMENSION Statement

General form:

DIMENSION vari(nl, n2, ...), var2(n1, n2, ...),
Sets aside n1%n2%... words
of storage for the specified
variable name variables.

Examples:

DIMENSION EXPNS(10,10)
DIMENSION A{(2,3,7,2), BATCH(30)

The DIMENSION statement defines one or more arrays having one or more dimensions. The size of each
array is (n1#n2%...) elements that require (n1*n2%...) %6 bytes of storage at execution time. The
number of dimensions cannot exceed 7.

Program Example:

DIMENSION ACTS(10,20)
CALL OPEN(2,'ACTR')
READ(2,#) ((ACTS(I,J),I=1,10),J3=1,20)

END

In subroutines, which are discussed in the next section, you may use integer variables for dimensions of an
array passed to the subroutine. In the main routine, the dimensions must be integer constants.

An array must be dimensioned everywhere it is used. If you pass an array to a subroutine in the argument
list, you must dimension the array in the subroutine even if you use variable dimensions instead of constants.
If the values of an array’s dimensions differ in the main routine and a subroutine, then only those sections of

5-29 FORTRAN

the array specified in the subroutine can be used in the subroutine.

Program Example:

SOPTIONS X
DIMENSION AR (100)
CALL READR (AR)
TYPE 'THE TENTH ELEMENT = ',AR(10)
END

$OPTIONS X
SUBROUTINE READR (X)
DIMENSION X (IDUMMY)
TYPE 'ENTER 10 VALUES'
ACCEPT (X(I),I=1,10)
RETURN
END

If you specify a multi-dimensional array with variable subscripts in a subroutine, the actual values of the
variables are used for subscript calculation at runtime. For example:

REAL ITEMS(A,B,C)

The size of array ITEMSis A % B % C.

5.6.3. Initializing Variables

DATA Statement

General form:

DATA varl/constant list1/,var2/constant 1list2/,...

variable, L—— one or more constants

array ele-

ment, or Assigns initial values to the

array name variables or array elements.
Example:

DATA ALP/35.2/,IND/10/
DATA VECTOR/3,2,1/,ARAY(7,1)/11.2/
DATA ISTR/'MON'/,VEC/3%0/

The DATA statement initializes variable values before program execution. The constant(s) following a
variable are assigned to the variable. For example:

DATA SINGLE/15.9/ Initializes variable SINGLE to 15.9.
DIMENSION SEVRAL (9)
DATA SEVRAL/2,2,2/ Initializes the first three elements

of array SEVRAL to 2.

You can use an asterisk to indicate repetition of a value in a DATA statement. For example, the following
DATA statements are equivalent:

5-30 FORTRAN

DATA SEVRAL/2,2,2/
DATA SEVRAL/3%2/

Character strings in DATA statements are assigned to variables left-justified and filled with nulls (binary
zeros) on the right. For example:

DATA CHR/'A'/ Assigns A followed by five nulls to variable
CHR.

You can also initialize arrays with string values. For example:

DIMENSION CHARS (3)
DATA CHARS/3%'FIRST'/

An error occurs if a variable initialized in a DATA statement is not used within the program. DATA statements
are processed after the END statement, so errors in DATA statements appear after the END statement in the
listing file. DATA statement errors include the statement number and the name of the variable being initial-
ized when the error occured.

5.6.4. The COMMON Declaration

The COMMON declaration sets aside a block of memory locations that can be shared by different routines of a
program. Variables and arrays named on one COMMON declaration share storage with variables and arrays
named in another COMMON declaration. For example:

DIMENSION ARAY(100)

COMMON X,Y,ARAY Variables X and Y share storage with variables
CALL SUB1 A and B, respectively, and the first ten
elements of array ARAY share storage with the
. elements of array XRAY .

END

SUBOUTINE SUB1
DIMENSION XRAY(2,5)
COMMON A,B,XRAY

RETURN
END
COMMON allows you to transmit data to and from subprograms without passing it in arguments.

You can include array declarations in the COMMON declaration. For example:

COMMON X,Y,ARAY(100)
has the same effect as

DIMENSION ARAY (100)
COMMON X,Y,ARAY

Note that the DIMENSION statement must precede the COMMON statement. The COMMON declarations dis-
cussed so far are blank COMMON declarations; that is, they are not labelled. Blank COMMON is indicated by no
label or by two slashes. For example:

COMMON X,Y,Z
COMMON //X,Y,Z

Blank COMMON is shared among the routines of a program. In a given routine, elements may be added to

blank COMMON by a series of COMMON declarations. If blank and labelled COMMON (described below) are
used, blank COMMON is treated like labelled COMMON with a label of blank.

5-31 FORTRAN

You might want to write a program that has several subprograms using variables in COMMON storage. In this
case, every subprogram probably will not use every variable in COMMON storage. You can avoid including the
entire COMMON declaration in all subprograms by labelling COMMON blocks. Labelled COMMON permits a
main routine to share one part of COMMON storage with one subprogram and another part with another
subprogram. For example:

COMMON /ADDR/ A1, A2 /ZIP/ 21, Z2

CALL ADDRESS

CALL ZONES

END

SUBROUTINE ADDRESS
COMMON /ADDR/ A(2)

RETURN

END

SUBROUTINE ZONES
COMMON /ZIP/ X, Y

RETURN
END

The main routine shares COMMON block ADDR with subroutine ADDRESS and shares COMMON block ZIP
with subroutine ZONES.

In this example, ADDR and ZIP are COMMON block labels. COMMON block labels may have six characters but
only the first five are retained. A label cannot be the same as a subroutine or function name.

COMMON Statement

General forms:

COMMON 1list
COMMON /labell1/ list1 /label2/ list2
[!

Up to 6 char- One or more Specifies memory
acters. Only variables, array locations to be
the first 5 names, Or array shared by other
are retained declarations routines in the
program.
Examples:

COMMON NAME, ADDR, ZIP
COMMON /COUNTS/C1,C2,C3/FREE/A(20),X,ANS
COMMON /LABL1/A,B,C/LABL2/X,Y,Z//BLANK (20)

The COMMON statement specifies variables and arrays that are to share storage with variables and arrays
named in other COMMON statements. If the first form is used, all variables and arrays in the 1ist are
shared. If 1abels are used, only the variables following the specified 1abels are shared.

5-32 FORTRAN

Program Example:

COMMON RATE,Y

ACCEPT 'ENTER THE INTEREST RATE ',RATE
CALL RULE72

TYPE 'MONEY DOUBLES IN ',Y,' YEARS'
END

SUBROUTINE RULE72

COMMON R,TIME

TIME = 72/R

RETURN

END

Blank and labelled COMMON can be specified in the same COMMON statement. For example:
COMMON A,B,C/TALLY/X,Y,Z/NEW/I,J,K//ARAY(10)

In this statement, A,B,C, and ARAY (10) are in blank COMMON; X, Y, and Z are in COMMON block
TALLY; and I, J, and K are in COMMON block NEW.

5.7. SUBROUTINES AND FUNCTIONS

You need not copy the same code over and over for a computation or other process that must be repeated
several times in a program. You can separate the code from the rest of the program and call it as a subroutine
or function.

Subroutines and functions consist of statements stored together outside the main routine. Each subprogram
must end with an END statement.

In PTDOS FORTRAN subroutines and functions cannot be compiled separately from the main program. They
must all be included in a single source program file and be compiled together.

A subroutine is used via a CALL statement. During execution of a program, control transfers to a subroutine
when a CALL statement is encountered and returns to the calling program when a RETURN statement is
encountered.

A function is used by including its name in an expression. Control transfers to the function, which assigns a
value to the function name before returning to the calling program. That value is then used where the
function name appears in the expression.

Both subroutine and function calls can include arguments. Items in the argument list of a subprogram call
pass values to and from corresponding items in the parameter list of a subprogram declaration. For example:

A =12

B = 56.7

CALL PASS (A, B, C) Argument A corresponds to parameter X,
TYPE C ‘ I | argument B to parameter Y, and argument
END C to parameter Z.

SUBROUTINE PASS(X, Y, Z)

Z =X + Y

RETURN

END

In this example, the subroutine uses the values of A and B assigned in the main program for X and Y. The
subroutine computes a value for Z and the main program has access to that value through argument C.

The information that is actually passed from the argument list of a subprogram call to the parameter list of a
subprogram declaration is the address at which each value is stored.

Whenever a variable in a subprogram appears in the parameter list of the subprogram’s declaration, the
compiler interprets the information passed as an address, not as a value. In other words, the variable reference
is indirect. Furthermore, when a parameter receives a new value in a subprogram, that value is assigned to the

5-33 FORTRAN

address passed in the subprogram call.

Indirect reference can lead to unexpected results in certain situations. The arguments in a subprogram call can
be simple or subscipted variables, expressions, or constants. A subprogram should not assign new values to
parameters if the corresponding arguments are constants or expressions.

When an argument in a subprogram call is an expression, the calling program evaluates the expression, stores
the value in a temporary address, and passes that address to the subprogram. If the corresponding parameter
of the subprogram receives a new value, that value is assigned to the temporary address, which is not known
in the calling program. For example:

B = .2

cC = .3

CALL EXP (B%x%2,C) ~The value of the first argument is not changed by
TYPE B,C the subroutine.

END

SUBROUTINE EXP (X,Y)

X = SIN(X)

Y = SIN(Y)

RETURN

END

When an argument in a subprogram call is a constant and the corresponding parameter receives a new value
in the subprogram, the following occur:

(a) The new value is assigned to the address of the constant.
(b) The constant now has a new value in the calling program.

For example:

CALL SUBX(2,B) -The value of 2 is 10 upon return from SUBX because I was
TYPE '2 = ', 2 set to 10 in SUBX and that value was assigned to 2.

TYPE 'B = ', B

END

SUBROUTINE SUBX(I,J)

I=10

J=10

RETURN

END

When executed. this routine displays:
2 = 10
B = 0.10000000E 002
Note:

The following cannot be used for subroutine, function or commom names: A, B, C, D,
E, H, L, M, SP, PSW, or any PTDOS reserved name contained in PTDEFS.

5.7.1. Subroutines

A subroutine is an independent group of statements that are activated by a CALL statement. Each time the
CALL statement 1s executed, the statements of the subroutine are executed.

The essential parts of a subroutine are:

5-34 FORTRAN

g

SUBROUTINE subroutine name { (parameter list)}
RETURN
END

CALL Statement

General form:
CALL subroutine name {(argument list)}

Constants, simple or —I Executes the speci-
subscripted variables, fied subroutine.
or expressions

Examples:
CALL COMP (X)

CALL EMP (100,N)
CALL ERRMSG

The CALL statement executes the specified subroutine, passing values to it in the argument list. When
the subroutine has completed execution, it may pass the new values back to the calling routine. Then execu-
tion continues with the statement following the CALL statement.

One way to pass values to and from subroutines is to include them as arguments in a CALL statement.
Variable values cannot be passed by using the same variable name in the calling program and the subroutine.
A variable name is local to the routine in which it appears.

Program Example:

ACCEPT 'ENTER A NUMBER ',N
CALL FACT (N,ANS)

TYPE N,' FACTORIAL = ',ANS
END
SUBROUTINE FACT (NUMBER,ANSWER)
ANSWER = 1
DO 10 I = 1,NUMBER
10 ANSWER = ANSWER * I
RETURN
END

5-35 FORTRAN

SUBROUTINE Statement

General form:

SUBROUTINE subroutine name { (parameter list)}

1 to 6 characters variables

Only the first

5 have signi- Declares that subsequent
ficance. statements up to an END

constitute a subroutine.
Examples:
SUBROUTINE CHECK (BAL)

SUBROUTINE ACT (EXP,INC,DEB)
SUBROUTINE ERRMSG

The SUBROUTINE statement is the first statement of a subroutine. The subroutine name can have up
to six characters but only the first five are seen by the assembler. For example, SUBR1 and SUBR12
represent the same subroutine to the assembler.

The parameters in the list are used in the subroutine only. Each parameter receives a value from or passes a
value to an argument in the corresponding position of a CALL statement.

Program Example:

SOPTIONS X
REAL INT
INTEGER YEARS
ACCEPT 'ENTER PRINCIPAL, INTEREST, & YEARS: ', PRIN, &INT, Y
CALL GROW{PRIN,INT,Y,TOTPRN)
TYPE 'AFTER ',Y,' YEARS THE PRINCIPAL IS ',TOTPRN
END

SOPTIONS G,X
SUBROUTINE GROW (PRIN, RATE, ITIME, FINVAL)
FINVAL = PRIN
DO 10 I = 1, ITIME
FINVAL = FINVAL + FINVAL*RATE

10 CONTINUE
RETURN
END

In this example, the CALL statement passes the values of PRIN, INT, and Y to subroutine GROW. The
values are assigned to variables PRIN, RATE, and ITIME in the subroutine. Subroutine GROW passes the
value of FINVAL to TOTPRIN in the main program. In fact, all values in the CALL argument list are passed
to the corresponding names in the subroutine’s parameter list and the reverse happens after execution of the
subroutine.

5-36 FORTRAN

Mg

RETURN Statement

General form:
RETURN Exits a subroutine or function
and returns control to the state-
ment following the call.

Example:

RETURN

Use the RETURN statement anywhere in a subroutine or function to return control to the routine that called
the subprogram. Control is transferred to the statement following the CALL statement.

If a RETURN statement is not executed in a subprogram, control will not be returned to the calling routine,
rather execution will terminate at the end of the subprogram.

The RETURN statement is not valid in the main program.

5.7.2. Functions

A function is an independent group of statements that are activated by referring to the function name in an
expression. The function computes a value and assigns that value to its name. Thus, the function name
returns a value that can be used as part of an expression.

In the absence of type declarations, the first letter of a function’s name determines whether the value returned
is integer or real. Functions whose names begin with I through N return integer values. All others return real
values.

The type of a function can be changed by declaring the type in the function declaration. For example, the
function FUN declared below, returns an integer value:

INTEGER FUNCTION FUN (ARG)

Another way to set the type of a function is to use a type statement within the function definition. For
example:

FUNCTION FX(Y)

INTEGER FX ————FX is an integer function.
FX = SIN(Y)

RETURN

END

A function must have at least one argument even if it is a dummy argument.

The essential parts of a function are:

FUNCTION function name (parameter list)
RETURN

END

5-37 FORTRAN

FUNCTION Statement

General form:

{type} FUNCTION function name (parameter list)
| | |

REAL, 1 to 6 characters one or more

INTEGER, Only the first 5 variable names

or have significance

LOGICAL Declares that the subse-

guent statements up to an
END constitute a function.

Examples:

FUNCTION XCHNG(X,Y)
FUNCTION PWR(VAL)

The FUNCTION statement is the first statement of a function. The function name can have up to six
characters but only the first five are seen by the assembler. There must be at least one parameter in the
parameter list even if it is a dummy parameter. You must assign a value to the function name within the

function.

The optional type declaration specifies the type (real, integer, or logical) of value returned in the function. For
example:

FUNCTION ANS (X)

returns a real value because the name begins with A, but
INTEGER FUNCTION ANS (X)

returns an integer value.

A function is called by including its name and arguments in an expression. The following statement is an
example of a function called by specifying its name in an expression:

ANS = PWR(17) + X

I—- The value returned for PWR depends upon the value of the
argument (17 in this case).

Warning:

If you pass a constant as a parameter in a function call, the value of the constant can
be changed in the main program. For example:

ANS = PWR(17) + X The value of 17 is zero after the
function call.

END

FUNCTION PWR (A)

PWR = A%x%xA

A =20

RETURN

END

5-38 FORTRAN

Program Example:

C Main Program

DIMENSION A(100)

ANS = SUMSQ(A) / 100
TYPE 'ANSWER = ', ANS
END

C Function Definition
FUNCTION SUMSQ (X)
DIMENSION X (IDUM)

DO 10 I =1, 100

SUMSQ = SUMSQ + X(I)#*%2
10 CONTINUE

RETURN

END

5.7.3. BLOCK DATA Subprogram

The BLOCK DATA subprogram initializes variables that appear in COMMON declarations. BLOCK DATA
contains no executable statements, but contains declaration statements for establishing dimensions and values
for variables stored in COMMON. The statements that may appear in a BLOCK DATA subprogram are:

BLOCK DATA The first statement of the routine.

DIMENSION Defines arrays.

COMMON Names variables and arrays in COMMON. All elements
must be listed whether they are initialized or not.

DATA Initializes variables.

REAL

INTEGER

LOGICAL }——————Declare variable types.

IMPLICIT |

END The last statement of the routine.

For example:

BLOCK DATA
COMMON ALPHA, BETA /LABL/X,Y,A(10)
DATA /ALPHA/100, /X/58.3

END

5.8. COPYING SOURCE FILES

Commonly used source files can be incorporated into any routine using the COPY statement. The statements
from the copied file become part of the new routine during compilation.

COPY Statement

General form:

COPY file name Copies the statements
contained in the specified
PTDOS file name into the current program.
Example:

COPY REPORT

5-39 FORTRAN

The COPY statement inserts source statements from a specified file into the current program. The statements

are inserted where the COPY statement appears in the program.
Program Example:

IMPLICIT REAL (A-Z)
ACCEPT 'ENTER PRINCIPAL, INTEREST, & YEARS: ',
&PRIN, INT, Y
——> COPY INTRST
TYPE 'AFTER ', Y, ' YEARS THE PRINCIPAL IS ', TOTPRIN
END

INTRST is a text file containing the statements below. The statements
are automatically inserted after line 3 of the above
program during compilation:

—
FINVAL = PRIN
|| DO 10 I=1,Y
FINVAL = FINVAL + FINVAL % INT
10 CONTINUE

5-40

FORTRAN

g

SECTION 6

SYSTEM SUBROUTINES

6.0. INTRODUCTION

PTDOS FORTRAN supplies a number of subroutines that enable you to use the more advanced features of the
system. Using the system subroutines you can access many PTDOS file handling commands, have random
access to data on files, abort or delay execution, directly address memory, plot data on the screen, etc.

In the descriptions of the individual routines that follow, you can substitute the name of a variable or array
containing a character string anywhere a character string is specified. For example, the second argument of
the OPEN subroutine is a character string. A variable name can be used as follows:

A = 'MYFILE'
CALL OPEN({(2,A)

Note:

A file name includes all characters up to the first blank or null.

6.1. FILE HANDLING

The system file-handling subroutines let you open and close files, execute PTDOS file commands from your
program, and gain random access to files. These routines make the power of the Helios II Disk System
available to your FORTRAN programs.

6.1.1. Opening and Closing Files

The OPEN and CLOSE subroutines control access to PTDOS files. You must open a file before reading from
or writing to it. All open files are closed automatically when the program terminates or chains to another
program. If you want to protect a file from future access in a program or reuse the unit number, close the file
with the CLOSE subroutine.

OPEN Subroutine

General form:

CALL OPEN (unit, 'file name' {, buffer})

logical unit——| PTDOS file buffer address
number name

Opens the specified file and
associates the name with a logical
unit.

Examples:

CALL OPEN(2, 'MYFILE')
CALL OPEN(3,'SML',65535)
CALL OPEN (5, 'ARCHV/1"')

6-1 FORTRAN

The OPEN subroutine provides access to a disk file. The first argument can be any unit number except 0 or 1
(0 is reserved for terminal input and 1 is reserved for terminal output)‘

For the second argument, you can enter the file name as a character string or use a variable or array name
and assign a file name to it or enter the name at execution time.

You can specify a buffer address in the last argument. The address must be external to the system and to
user-protected memory. Specifying your own buffer address reduces management overhead and doesn’t take
up system buffer space.

The system will do dynamic buffering if you specify 65535 as the buffer address. This causes PTDOS to
allocate the buffer each time a request is made for the file and to deallocate the buffer when the request is
fulfilled. Thus, if many files are open at the same time, a small amount of buffer area can service all the files.

If you open a PTDOS file that does not exist, the program will create the file with a type of . , a block size of
4C0 hexadecimal, and no attributes.

You can use the OPEN statement for terminal input and output using the following special file names:

SCONIN - terminal input
$CONOUT - terminal output

The OPEN statement does not open the terminal, but associates it with a file unit. This feature can be useful
when testing a program with terminal input and output before using the program for file input and output.
For example:

IF (TEST .EQ. 1) FN = 'S$SCONIN’
CALL OPEN (2,FN)
READ (2,%) (A(I),I=1,N)

READ and WRITE statements associated with $CONIN and $CONOUT through the OPEN statement work
exactly the same as reading unit 0 or writing unit 1. For example:

CALL OPEN (11, 'SCONIN')
READ (11,*) 'INPUT QUANTITY ',QUANT
and

CALL OPEN(10, 'SCONOUT')
WRITE (10,100) (A(I),I=1,100)

CLOSE Subroutine

General form:

CALL CLOSE (unit) Closes a file that was
I previously opened with the
logical unit number OPEN routine.
Example:

CALL CLOSE (3)

The CLOSE subroutine closes the specified file. The unit number is then available for reuse.

6-2 FORTRAN

L

The CLOSE subroutine does not write an end of file at the current read or write position. If you want to write
an end of file and delete the remainder of the file, use the ENDFILE statement before calling CLOSE.

Note:
Attempting to close unit 0 or 1 causes a runtime error.
Program Example:

DIMENSION FN(2), DATA(20)
READ(0,10) 'INPUT FILE = ', (FN(I),I=1,2)
CALL OPEN(2,FN)
READ (2,) (DATA(I),I=1,20)
CALL CLOSE(2)
READ(0,10) 'OUTPUT FILE = ', (FN(I),I=1,2)
CALL OPEN(2,FN)
WRITE(2,%) (DATA(I),I=1,20)
10 FORMAT (2A6)
END

This program copies 20 values from the input file to the output file. In the sample execution that follows, the
user enters $CONIN for the input file and $CONOUT for the output file, so both input and output occur at
the terminal.

User: #COPY <CR> (Assuming the object file name is COPY)
Program: INPUT FILE = $CONIN <CR>
User: 1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0 <CR>
Program: OUTPUT FILE = SCONOUT <CR>
0.10000000E 001 0.2000000E 001 0.30000000E 001

STOP END IN - MAIN

6.1.2. Random Access to Files

Normal access to data files is sequential. Each time a READ or WRITE statement is called, it reads or writes
the next data item in sequence. Thus, reading a data item near the end of a file requires reading all data items
up to that point.

With random access, you can set the next read or write position to any point in the file. Thus, you can read
informaton from any location on a file without reading the information that precedes it, and you can overwrite
particular values in a file without having to rewrite the entire file.

The position in a file is usually expressed as the number of bytes from the beginning of the file. For example,
position 10 is eleven bytes from the beginning of the file (the byte at the beginning of the file is byte 0).

You may also express position as the number of blocks from the beginning of a file, as described under the
SEEK subroutine.

The current position in a file is the place the next input or output operation will occur. After a read or write
operation, the current position is just after the last byte read or written. The current position may be reset
using any of the following:

REWIND statement
BACKSPACE statement
SEEK subroutine
SPACE subroutine

The subroutines described in this unit provide random access to any data file. The RANDOM subroutine (or
the PTDOS RANDOM command) must be called first to make a file accessible as a random file. The SEEK

6-3 FORTRAN

subroutine positions a random file to a specific byte or block. The SPACE subroutine spaces forward or
backward relative to the current file position, or spaces to the end of the file. The CONTRL subroutine makes
random access more efficient.

RANDOM Subroutine

General form:
CALL RANDOM (unit) Make the specified file
ready for random access.
logical unit number

Example:

CALL RANDOM (4)

The RANDOM subroutine makes an existing file available for random access. It has the same function as the
PTDOS RANDOM command. The read or write position after the RANDOM routine has been executed is after
the end of file. The RANDOM routine (or the PTDOS RANDOM command) must be called before you can
position the file using the SEEK subroutine. RANDOM need only be called once for a particular file.

SEEK Subroutine

General form:

CALL SEEK (unit, position {,block})

logical unit—-| byte or |-—any value indicates that
number block number position is a block no.

Positions the random file to the
byte or block specified.

Examples:

CALL SEEK(2,132)
CALL SEEK(5,20,1)

The SEEK subroutine positions a file to the beginning of a specified byte or block. If the third argument is
present, the location specifies a block number, otherwise it specifies a byte number.

The file indicated must have been set up for random access with the RANDOM subroutine or PTDOS RANDOM
command. The position cannot be greater that 65,535 bytes or 128 blocks.

6-4 FORTRAN

; .
s

k-

Program Example:

CALL OPEN (2, 'FOUT')
CALL RANDOM(2)
DO 10 I=1,10
POS = 10%I
CALL SEEK(2,PO0OS)
READ(2,5)C
WRITE(1,5)C
10 CONTINUE

5 FORMAT (A6)

END

If FOUT contains:

01234567890

9876543210987654321
11223344556677889900112233
123123123123123123123123123123123123123123123

The program above reads and displays:

0
109876
1
556677
001122
231231
312312
123123
231231
3123

byte 10)
byte 20)
byte 30)
etc.)

(
(
(
(

Notice that the carriage return at the end of each record counts as one byte.

SPACE Subroutine

General form:
CALL SPACE (unit, displacement, 'direction')

logical unit constant +, -, or E
number or variable

number of bytes

to space over

Changes the file's next read or

write position by the number of

bytes specified in displacement.
Examples:

CALL SPACE(3,50,'+")
CALL SPACE(2,DIS,'-")
CALL SPACE(S5,1,'E")

The SPACE subroutine lets you space forward or backward a specified number of bytes from the current file
position. The third argument indicates the direction of spacing or an advance to the end of the file: + means
space forward, — means space backward, and E means advance to the end of the file. Any other value for

6-5 FORTRAN

direction is treated as +. For example. the statements below position unit 3 to six bytes before the end of file:

CALL SPACE(3,1,'E")
CALL SPACE(3,6,'-")

¥ i
Mg

A file can be spaced forward or backward up to 65.535 bytes. If the beginning or end of file is encountered, a
runtime error is generated.

Program Example:

CALL OPEN(2, 'DATA')

CALL RANDOM(2)

REWIND 2

READ(2,10)X,Y

CALL SPACE(2,6,'—"')

READ(2,10)2

CALL SPACE(2,60,'+")

READ (2,10)A

WRITE(1,10)X,Y,Z,A
10 FORMAT (4A6)

END

If DATA contains:

01234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
9876543210987654321
11223344556677889900112233
123123123123123123123123123123123123123123123

the program above reads and displays:

01234567890AVWXYZ 231231

The first six characters of the first record are read and assigned to X, the next six characters are assigned to Y.
The current position after the first READ statement is at the beginning of the second record. The SPACE
subroutine backs up six bytes (the carriage return counts as a byte) and reads the last five characters of the

first record for Z. Again. the current position becomes the first byte of the second record. The SPACE
subroutine advances 30 bytes and reads the value for A (231231).

6.1.3. File Management

You can create files, kill files, and perform many other PTDOS file functions within a PTDOS FORTRAN
program. The subroutines described in this unit work like the corresponding PTDOS commands described in
section 1 of the PTDOS User’s Guide.

6-6 FORTRAN

CREATE Subroutine

General form:

CALL CREATE('file name','type’',block size)

PTDOS file PTDOS size of disk blocks

name file
type Create a file with the
specified type and block
size.

Examples:

CALL CREATE('MYFILE','I', 200)
CALL CREATE ('ZONES','F',$1C0)

The CREATE subroutine creates a file with the specified name. type. and block size. Only the first

letter is used for the file type. See section 3.5 of the PTDOS User’s Guide for more about file types. No
attributes are assigned to the file.

Note:

Attempting to create a file that already exists does not cause a runtime error.

KILL Subroutine

General form:

CALL KILL ('file name') Deletes the specified file
from the PTDOS system.

Example:

CALL KILL ('DAT3')

The KILL subroutine deletes the specified file from disk. No error is generated if the file does not exist.

CHNAME Subroutine

General form:

CALL CHNAME('old name', 'new name') Changes the file
L_ _J name from old
file names name to new name.

Example:

CALL CHNAME ('ADAT', 'FINAL')

The CHNAME subroutine changes the name of a PTDOS file.

6-7 FORTRAN

CHTYPE Subroutine

General form:

CALL CHTYPE('file name', 'type') Changes the type of

| of the specified file
PTDOS file PTDOS to that indicated.

name type

Example:

CALL CHTYPE('XFIL','T"')

The CHTYPE subroutine changes the type of the specified file to the PTDOS file type given in the second
argument.

CHATTR Subroutine

General form:

CALL CHATTR('file name',

PTDOS file name l—PTDOS file attributes

attributes)

Changes the attributes of the
specified file to those listed.

Examples:

CALL CHATTR('MYFILE',1)
CALL CHATTR('NUMS',32)

The CHATTR subroutine resets the attributes of a PTDOS file to those specified. Attributes are specified as
bits in the first byte. Single attribute values are:

1 KILL protected

2 WRITE protected

4 READ protected

8 INFORMATION protected

16 ATTRIBUTE change protected

32 NAME and TYPE change protected
64 Disk allocation prohibited
128 User attribute

For more information about attribute values, see the PTDOS User’s Guide.

FORTRAN does not check the new attributes.

Caution:

Remember that a file with both attribute protection and kill protection cannot be re-
moved from disk.

FORTRAN

‘INFO Subroutine

General form:

CALL FINFO('file na

Example:

CALL FINFO('D1FIL',

Retrieves status
information about
the specified
file and stores
it in the array.

e', array name)

D1INFO)

The FINFO subroutine retrieves s
status information is returned in t
The array receiving the informat

See documentation of the CBTOF

tus information about a file and places it in the specified array. The
form described on page 2-24 of the PTDOS User’s Guide, under FINFO.

n must have at least four elements.

itine in unit 6.4 for a program example of FINFO.

ZTUNT Subroutine

General form:

CALL SETUNT {(drive)

PTDOS disk u

Example:

CALL SETUNT (1)

Changes the system default
drive to the one specified.

The SETUNT subroutine changes
disk unit searched when you specif}

CALL SETUNT (1)
CALL OPEN (5, 'MU

Program Example:

10
20
30

CALL CREATE ('SDA
CALL OPEN (2, 'SDA
TYPE 'ENTER SALES
DO 10 I=1,100
ACCEPT '?',SLSNO,
IF (SLSNO .EQ. 0)
WRITE (2,30) SLSNO
CONTINUE

CALL CHATTR ('SDA
FORMAT (I8,F12.2)
END

This program reads values from th|
file to KILL and WRITE protected

e system default drive to the one specified. The default drive is the
a file name without appending /unit. For example:

T') This statement attempts to open MULT on
disk unit 1.

','F',$100)
")

LSAMT
O TO 20

ISLSAMT

terminal and stores them on a disk file. It then sets the attributes of the

6-9 FORTRAN

CONTRL Subroutine

General form:

CALL CONTRL (unit,op,DEin,HLin,Acut,DEout,HLout)

Logical unit// CTLOP Values returned in
number opera-— DE and HL registers
tor Values input

to DE, HL, and
A registers

Allows program control over devices
or returns information about devices.
Examples:

CALL CONTRL(0,2,0,'?',0,0,0)
CALL CONTRL (FILE,4,0,$6500,0,0,0)

The CONTRL subroutine implements the CTLOP system call, described in section 2 of the PTDOS User’s
Guide. Using CONTRL, you can perform any of the following operations from your program:

CTLOP operator Operation performed

0 Return driver status
Forms control

Set PTDOS prompt
Reset device

Load random index
Echo on

Echo off

Special status read

N Wy

The values passed to and from the routine in the DE, HL, and A registers are described in the PTDOS User’s
Guide under the description of the CTLOP operation.

Examples:

CALL CONTRL(0,2,0,'?',0,0,0)
Sets the PTDOS prompt to ? instead of no prompt.

CALL CONTRL(2,4,0,$6500,0,0,0)
Moves the index block of the random file on unit 2
from disk into memory location 6500. Since each SEEK
operation on a random file refers to the index block,
making the index block available in memory decreases
the access time.

Program Example:

IMPLICIT INTEGER (A-2)
CALL CONTRL(7,0,0,0,A,DE,HL)

TYPE 'PROTECTION = ',A
TYPE 'CHRS = ' ,DE
END

This program displays the attributes and device characteristics of file number 7.

6-10 FORTRAN

P

6.2. SPECIAL TERMINAL INPUT AND OUTPUT

Besides the terminal input and output available through FORTRAN statements. the following features are
available through system subroutines:

®Character input
®Status test
® Plotting

CTEST Subroutine

General form:

CALL CIN (var{,parity}) Reads a single character
’ from the terminal and stores

variable any it in var. If parity is

value present, the first bit is

set to zero.

Examples:

CALL CIN (CHAR)
CALL CIN (X,1)

The CIN subroutine accepts a single character from the terminal. The character is stored in the leftmost byte
of var in 8-bit binary format. If the second argument is present, the leftmost bit of var is set to zero.
Otherwise the leftmost bit remains as read from the terminal.

For example:

80 CALL CIN (CHAR,1)
IF (COMP (CHAR,#0D00,1) .NE. 0) GO TO 80

Hexadecimal code for carriage return

These statements wait for a carriage return from the terminal before continuing. The COMP function
compares character strings as described in section 7.

CTEST Subroutine

General form:

CALL CTEST (status) Tests the input status of
the terminal.
variable

Example:

CALL CTEST (ISTAT)

The CTEST subroutine determines whether there is a character ready for input from the terminal. The
status is zero if there is no character and one if there is a character. For example:

6-11 FORTRAN

10 CALL DELAY(10) Waits 0.1 second
CALL CTEST (STATUS) Tests for a character
IF (STATUS .EQ. 0) GO TO 10 Repeats loop if there is no character
CALL CIN {(CHAR)

Reads the character

PLOT Subroutine

General form:

CALL PLOT (x, y, 'text', n {,m}) Displays n characters
l l I of text m times,
variables variables starting at coordi-
nates Xx,y.

Examples:

CALL PLOT(1,1,'~',1)
CALL PLOT (XCO,YCO,'123',CX,CY)

You can use the PLOT subroutine to draw graphs or figures or display characters at a specific position on the
screen.

In a Processor Technology Sol System or a system using the VDM-1 Video Display Module, the screen is
represented in the memory map of 8080 computer memory as a 1K block beginning at CC00 hexadecimal. A
character placed at address CCO0O will appear on the screen in the first character position of the first line.

The x and y coordinates of the PLOT routine address a position on the screen defined by:
((x-1)%64 + y-1) + 0CCOOH

where x must be between 1 and 16 and y must be between 1 and 64 (the screen has 16 lines and 64 character
positions per line).

The PLOT routine does not prevent you from addressing locations outside the screen’s memory. By using
values of x and y outside the specified ranges, you can use PLOT to place characters in fixed memory
locations. For example, you could use the PLOT subroutine to perform memory map input and output to
peripheral devices.

The fourth argument must be present to tell the routine how many characters of text to display. The fifth
argument, which tells how many sets of the specified characters to display, is optional.

The first four arguments are required with one exception: you can call PLOT with no arguments to clear the
screen.

The Processor Technology VDM-1 module output port is at C8 and the Sol output port is at FE. The VDM-1
output port must be at either 0C8 or OFE hexadecimal.

Program Example:

CALL PLOT

DO 10 A = 1,39

B = 16 — A%%2/100

CALL PLOT(B,A,'x',1)
10 CONTINUE

END

This program plots the curve Y = X**2,

6-12 FORTRAN

6.3. PROGRAM TERMINATION

The subroutines described in this unit let you terminate execution without a message, abort execution, or

delay execution.

EXIT Subroutine

General form:
CALL EXIT Terminates execution.
Example:

CALL EXIT

The EXIT subroutine terminates execution in the same way as the STOP statement except that CALL EXIT

does not display STOP at the terminal.

ABORT Subroutine

General form:

CALL ABORT (error) Aborts execution and
displays the specified
number error code.
Example:

CALL ABORT (89)

The ABORT subroutine terminates execution using the ABTOP system call and displays an error code on the

terminal. All open files are closed and control returns to PTDOS.

DELAY Subroutine

General form:

CALL DELAY (time) Waits time/100 seconds
before returning from the
variable or constant subroutine.
Examples:

CALL DELAY (10)
CALL DELAY (TFAC)

The DELAY subroutine allows a time delay of 0.01 to 635.36 seconds. The routine waits time/100 seconds
before returning from the call. The argument must be between 0 and 63535, causing the following time

delays:

6-13

FORTRAN

time = 1 delay = 0.01 seconds
time = 2 delay = 0.02 seconds
time = 63535 delay = 635.35 seconds
time = 0 delay = 635.36 seconds

The timing is hardware dependent so the wait may not be exactly the same on all processors. However, the
wait will be in units of exactly .01 seconds on processors with 500 nanosecond CPU clocks.

6.4. PROGRAM LINKING

You can link separately-compiled FORTRAN object files using the CHAIN subroutine. No variable values are
preserved between links. You can link any number of executable programs by using the CHAIN subroutine at
the end of each program to call the next program.

CHAIN Subroutine

General form:

CALL CHAIN ('program name') Loads the specified program
1 overwriting the existing
object one in memory.
file name
Example:

CALL CHAIN ('PART2')

The CHAIN subroutine loads another program and may overwrite the existing one. The new program must be
in object form and have a file type beginning with I (image).

If the specified program does not exist or an error occurs during loading, a FILE OP error occurs.
Program Example:
P1 is the name of the object file of the following program:

TYPE 'THIS IS PART 1°
CALL CHAIN ('P2')
END

P2 is the name of the object file of the following program:
TYPE 'THIS IS PART 2'

END
Execution:
User: P1 <CR>
First program: THIS IS PART 1
Second program: THIS IS PART 2

STOP END IN - MAIN

If the program specified in the CHAIN subroutine does not have a starting address, the subroutine loads the
program and returns control to the statement that follows the call to CHAIN. This allows assembly-language
routines to be loaded into memory from a FORTRAN program (see section 8).

6.5. OTHER UTILITY SUBROUTINES

The subroutines discussed in this unit let you address memory directly, convert binary values to decimal
values, and set a specific bit in a variable.

6-14 FORTRAN

A

MOVE Subroutine

General form:

CALL MOVE (n,loc?1,disp1,loc2,disp2) Moves n bytes from

_J loc1 to loc2. If

expression expres-— expression disp is positive
sion loc is a character

character string character string string. If disp

or memory address or memory address is negative loc's
value is a
memory address.

Examples:

CALL MOVE (6, 'ABCDEF',0,$CC00,-1)
CALL MOVE (2,A,-1,$CC00,-1)
CALL MOVE (1024, $CC00, -1, A, -1)

The MOVE subroutine allows direct access to memory for both reading and writing. It moves n bytes from
loc1 to loc2. The arguments 1oc1 and loc2 specify either a memory address to be used or a character
string to be moved.

The interpretations of 1oc1 and loc2 depends on the values of disp and disp2, respectively. If
disp is negative, 1oC contains a memory address. If disp is positive, 10c is treated as a character string.
In the first case, the displacement (disp) is added to loc.

There is no reason to move a value to a character string, so the value of disp2 should be negative.

Explanation of examples:

CALL MOVE (6, 'ABCDEF',0,$CC00,-1)
Moves ABCDEF to address CCO0 hexadecimal.

CALL MOVE(2,A,-1,$CC00,-1)
Moves 2 bytes from the address stored in A to address CC0O0 hexadecimal.

CALL MOVE (1024,$CC00,-1,A,-1)
Moves 1024 bytes starting with address $CCO0 to the address specified by A.

6-15 FORTRAN

CBTOF Subroutine

General form:
CALL CBTOF (loc1, displacement, loc2 {, flag))

variable number of variable any nonzero
bytes value

Converts the 8-bit or 16-bit binary

number located at loc1 + displace-

ment to its decimal equivalent and

stores is in loc2. The binary num-

ber is a 16-bit number unless the

fourth parameter is present.
Examples:

CALL CBTOF (BVAR,0,DVAR)
CALL CBTOF (ARAY(1,1),6,VAL(2))
CALL CBTOF (X,1,Y,1)

The CBTOF subroutine converts a 16-bit or 8-bit unsigned binary number to a decimal floating point value.
The number to be converted is located at 1loc1 + displacement if displacement is positive. If
displacement is negative, then 1oc1 contains (rather than is) the address to be used, and the number to
be converted is at the indicated address plus the absolute value of displacement.

If £lag is not present, the binary number is treated as a 16-bit value stored in standard 8080 format (two’s
complement binary). If flag is present, the binary number is treated as an 8-bit value. The converted
number is stored in the third argument.

Program Example:

DIMENSION A(4)

CALL FINFO('SUTIL',A)

CALL CBTOF(A(1),0,1ID)

CALL CBTOF (A (1) ,6,NBLKS)
CALL CBTOF(A(1),12,BLKSZ)
WRITE (1,10) ID, NBLKS, BLKSZ

10 FORMAT('ID = ', I5, ' # BLOCKS = ', I5,
&' BLOCKSIZE = ', I5)
END

This program retrieves in binary form status information about disk file SUTIL. It converts the information
to decimal form and displays it at the terminal.

6-16 FORTRAN

BIT Subroutine

General form:

CALL BIT (variable, displacement , 'code')
variable name constant S, R, or F
or variable
bit displacement

Sets bit 0 + displacement of
variable to 1, 0, or flip.
Examples:

CALL BIT (NEWVAR, 0, 'S')
CALL BIT (COUNT, B1)

The BIT subroutine lets you set the individual bits of a variable. The displacement a bit displace-
ment.

A bit can be setto 1 ('S"'), resetto 0 ('R'), or flipped to its opposite value (rFr).

Recall that the form of a stored value is:

Byte: 0 1 2 3 4 5
Il nn | nn | nn | nn | Oi | ee |
sign exponent

where each set of two digits represents a byte. Each byte consists of eight bits. While bytes are numbered from
left to right, the bits within a byte are numbered from right to left. Thus, to set the last bit of a value (the
rightmost bit of byte 5), use a displacement of 40 and to set the first bit of a value (the leftmost bit of
byte 0), use a displacement of 7.

In general, the byte affected by the BIT subroutine is:

variable + (displacement / 8)
and the bit within the byte is:
MOD (displacement, 8)

where bit 0 is the rightmost bit and bit 7 is the leftmost bit of the byte.

6-17 FORTRAN

SECTION 7

SYSTEM FUNCTIONS

7.0. INTRODUCTION

PTDOS FORTRAN provides general mathematical functions, trigonometric functions, and a string comparison
function.

7.1. GENERAL MATHEMATICAL FUNCTIONS

In the table of funtions below, exp, expl1, and eXp2 represent numeric expressions.

General forms:

ABS (exp) The real absolute value of exp.
AINT (exp) The truncated value of exp.

ALOG (exp) The natural logarithm of exp.
ALOG10 (exp) The logarithm base 10 of exp.
AMAXO0 (expl1,exp2,...)The largest of the integer values

represented (up to 254 values).

AMAX1 (expl1,exp2,...)The largest of the real values
represented (up to 254 values).

AMINO (exp1,exp2,...)The smallest of the integer values
represented (up to 254 values).

AMIN1 (expl1,exp2,...)The smallest of the real values
represented (up to 254 values).

AMOD (exp1,exp2) The real remainder when expl is
divided by exp2.

DIM(exp1,exp2) The positive difference between exp?
and exp2.

EXP (exp) The constant e raised to the power
exp.

FLOAT (exp) exp converted to a real number.

IABS (exp) The integer absolute value of exp.

IDIM(exp1,exp2) The positive difference between

exp1 and exp2.

IFIX(exp) The truncated value of exp.
INT (EXP) The truncated value of exp.
ISIGN (exp) The sign of exp; 1if positive, -1

if negative, 0 if zero.

FORTRAN 7-1

MAXO0 (expl1,exp2,...) The largest of the integer values
represented (up to 254 values).

MAX1 (exp1,exp2,...) The largest of the real values
represented (up to 254 values).

MINO (expl1,exp2,...) The smallest of the integer values
represented (up to 254 values).

MIN1 (exp1,exp2,...) The smallest of the real values
represented (up to 254 values).

MOD (exp1,exp2) The integer remainder when expl is
divided by exp2.

RAND (exp) Entry exp in a table of random
numbers.
SIGN (exp) The sign of exp; +1 if positive, -1

if negative, 0 if zero.
SQORT (exp) The square root of exp.
Examples:

ANS = ALOG(X) /fAMOD (SNUM,D)
IF (EXP(PWR) .GT. RS) GO TO 100

All the PTDOS FORTRAN mathematical functions are ANSI standard functions except for RAND. This func-
tion behaves as if it were returning an entry from a table of random numbers. RAND’s argument determines
which entry in the table is returned:

Argument Value returned

0 The next entry in the table
-1 The first entry in the table. The table pointer is reset to the first entry.
n The entry following n.

Although the random numbers generated are between 0 and 1, numbers in any range may be obtained with
an appropriate expression. The following statement gives a random number between 0 and 99:

I = RAND(O0) = 100

FORTRAN 7-2

7.2. TRIGONOMETRIC FUNCTIONS

General forms:

SIN (exp) The sine of exp radians.

COS (exp) The cosine of exp radians.

TAN (exp) The tangent of exp radians.

ATAN (exp) The arctangent of exp; the answer
is in radians.

ATAN2 (expl,exp2) The arctangent of expl/exp2; the

answer is in radians.
exp is a numerical expression
Examples:

VIN = TAN (SA) %2
IF (SIN(A) .EQ. TAN(A)) STOP

7.3. COMPARING CHARACTER STRINGS

General form:

COMP('string1','string2',n) Compares n characters of
stringl with string2 and
integer returns +1 if stringl is

greater than string2, -1
if stringl is less than
string2, and zero if they
are egqual.

Examples:

ANS = COMP (WORD, 'ARA"',3)
IF (COMP (CHAR,#0A00,1)) GO TO 10

The COMP function compares characters strings character by character, from left to right. The characters are
compared according to their ASCII character codes.

The first two arguments of the function can be string constants or the names of variables or arrays containing
strings. For example:

10 CALL CIN(ONECHR)
IF (COMP (ONECHR,'/',1) .NE. 0) GO TO 10
CALL CIN(DRIVE)

You can also specify the hexadecimal code in binary form for a character. This is useful when testing for
special characters such as line feed (#0A00) or carriage return {#0D00). For example:

10 CALL CIN(X)
IF (COMP(X,'\D\',1) .NE. 0) GO TO 10

These statements read characters until a carriage return is encountered.

FORTRAN 7-3

7.4. EXECUTING ASSEMBLY-LANGUAGE PROGRAMS

General form:

CALL (address,argument) Executes the assembly routine
starting at address, passing
begin-execution variable the value of argument to it.
address of or constant

assembly routine
Examples:

WORD = CALL ($7000,STR)
IF (CALL($6500,A(2)) STOP

The CALL function begins execution of an assembly-language program that is loaded in memory. You can use
the CHAIN subroutine to load an assembly routine. For more information see section 8.

The second argument is evaluated, converted to a 16-bit binary number, and then passed to the called routine
in both the BC and DE register pairs. The assembly routine places the value to be returned in register pair HL
before executing an 8080 RET instruction. Since H and L consist of 16 bits, the value returned is limited to a
positive integer between 0 and 65535.

The stack must be maintained because the return address is placed on it when the assembly routine is called.

FORTRAN 7-4

g

SECTION 8

ASSEMBLY-LANGUAGE INTERFACE

PTDOS Assembly Language statements can be directly inserted into a FORTRAN program if they are preceded
by an asterisk in column 1. The line that contains the asterisk will be directly output to the assembly file
without further processing (except that the asterisk is deleted).

When using this feature, always put a FORTRAN CONTINUE statement immediately preceding the first
assembly language statement in each group. The CONTINUE statement will ensure that the assembly language
statements are inserted at the expected place.

Program Example:
J=0
DO 1,I=1,100
1 J=J
C
C The following is equivalent to the DO loop above,
C but it is partially coded in assembly language.
C
K=0
CONTINUE

* &
% LXI H,100
%« SHLD COUNT
« JMP SKIP
*COUNT DW O
*SKIP EQU §
* %
K=K
CONTINUE
C
C The following is the code for the end of the DO loop.

LHLD COUNT
DCX H

SHLD COUNT
MOV A,H
ORA L

JNZ SKIP

TYPE J,K
END
When executed, this program displays the final value for both indices.

You can call assembly-language programs from a FORTRAN program using the CHAIN subroutine to load the
assembly routine and the CALL function to execute it. The assembly routine to be executed must be an
assembled program on an image file (the file type begins with I).

FORTRAN 8-1

Program Example:

ACCE
CALL
Y =
TYPE
END

PT 'TYPE A NUMBER',VAL
CHAIN ('DUBL"')
CALL ($6666,VAL)

'THE NUMBER DOUBLED = ',Y

The value of VAL is passed to the
routine at 6666 in both BC and DE

register pairs.

where 6666 is the hexadecimal starting location of assembly routine DUBL, shown below:

ORG
DUBL MOV
MOV
DAD
RET
*
* DOUBLED
*

FORTRAN

6666H

H,D

L,E COPY TO HL
H DOUBLE IT

VALUE RETURNED IN HL

8-2

£

E

APPENDIX 1

FORTRAN STATEMENT SUMMARY

variable = expression

ACCEPT input list

ASSIGN n TO v

BACKSPACE unit

BLOCK DATA

Assigns the value of expression to variable.

Reads values from the terminal and assigns them to names in
the input list.

Assigns a statement label to a variable in an assigned GO TO
statement.

Positions the file at the beginning of the previous record.

Begins a BLOCK DATA subprogram for initializing COMMON
variables.

CALL subroutine name (argument list)

Executes the named subroutine passing values to it through
the argument list.

COMMON /label1/list1/label2/list2...

CONTINUE

COPY file name

Declares variables and arrays to be shared among routines.

Causes no action. Usually a dummy statement for transfer of
control.

Copies the source file into the current program.

DATA var/const/, array/list of constants/, etc.

Initializes variables, arrays or array elements.

DIMENSION var1(nl1,n2,...), var2(nl,n2,...), ...

DO n index = v1,v2{,increment}

END
DUMP /ident/ output list

ENDFILE
ERRSET n, v

ERRCLR

Sets aside space for the arrays indicated.

Executes subsequent statements to statement n as index
increases or decreases from v1 to v2.

Required as last statement of every routine.

Displays ident followed by items in the output list
when a runtime error that is not trapped occurrs.

Writes an end of file at the current read/write position.

Transfers control to statement n if a runtime error occurs.
Variable v contains the error code.

Clears the effect of the ERRSET statement.

FORMAT (field specifications list)

Describes the format of input or output for READ or WRITE
statements.

FUNCTION function name (parameter list)

GO TO n
GO TO (n1,n2,...), index

Begins a function definition.
Transfers control to statement n.

Transfers control to statement n1 if index = 1, transfers
ton2if index = 2, etc.

A1-1 FORTRAN

GO TO v, (n1,n2,...) Transfers control to v, where v must equal one of
nl,n2...

IF(exp) n1,n2,n3 Transfers control to n1, n2, or n3 for a minus, zero, or
plus value of exp.

IF (exp) statement Executes the statement only if the value of expression exp is
true (nonzero).

IMPLICIT type (letter list) Changes the default type of variables beginning with the
indicated letters.

INTEGER var1l, var2,... Declares that var1, var2, etc. are integer variables.

LOGICAL var1, var2,... Declares that var1, var2, etc. are logical variables.

PAUSE (character string) Interrupts execution until any key is typed, displaying the

word PAUSE and the string.

PAUSE n Interrupts execution until any key is typed, displaying the
word PAUSE and the integer n.

READ (unit, format{,end-of-file, error}) input list
Reads values from a file and assigns them to names in the

input list.
REAL varil, var2,... Declares that var1, var2, etc. are real variables.
RETURN Returns control from a function or subroutine.
REWIND Positions the file to byte 0.
STOP {character string} Terminates execution, displaying the string.
STOP n Terminates execution, displaying the integer n.

SUBROUTINE subroutine name {(parameter list)]}
Begins a subroutine definition.

TYPE output list Displays values from the output list at the terminal.

WRITE (unit, format (, end-of-file, error}) output list
Writes values from the output list on the specified file.

A1-2 FORTRAN

e

G

L

CALL
CALL
CALL

CALL
CALL

CALL

CALL
CALL
CALL
CALL

CALL

CALL
CALL
CALL
CALL

CALL
CALL

CALL

CALL
CALL
CALL
CALL
CALL

APPENDIX 2

SUMMARY OF SYSTEM SUBROUTINES

ABORT (error code) Terminates execution and displays the error code.
BIT (variable,disp,code) Sets, resets, or flips bit 0 + disp of variable.

CBTOF (loc1,displacement, loc2{,flag})
Converts a binary number to its decimal equivalent.

CHAIN('program name') Links to another program.

CHATTR('file name',attribute codes)
Changes the attributes of the specified file.

CHNAME ('old name', 'new name')
Changes the file name from 0ld name to new name.

CHTYPE ('file name', 'type') Changes the type of the specified file.
CIN(var{,parity)) Reads a single character from the terminal.
CLOSE (unit) Closes the specified file.

CONTRL (unit,op,DEin,HLin, Aout,DEout,HLout)
Allows program control over devices or gets information.

CREATE('file name', 'type', block size)
Creates a PTDOS file.

CTEST (status) Determines the input/output status of the terminal.
DELAY (time) Waits time/100 seconds before returning from the call.
EXIT Terminates execution.

FINFO('file name', array name)
Retrieves information about the specified file.

KILL('file name') Deletes the specified file.

MOVE (n, loc1, disp1, loc2, disp2)
Moves n bytes from loc1 to loc2.

OPEN (unit, 'file name'{, buffer})
Opens the specified file for input or output.

PLOT(x, y, 'text', n{,m}) Plots characters on the VDM screen.

RANDOM (unit) Allows random access to the specified file.
SEEK(unit, location{,blk)) Positions a random file to a specified byte or block.
SETUNT (drive) Changes the system default drive.

SPACE (unit, displacement,'direction')
Space forward, backward, or to the end of the file.

A2-1 FORTRAN

Function
Name

ABS
AINT

ALOG
ALOG10
AMAXO
AMAX1
AMINO
AMIN1
AMOD
ATAN
ATAN2
CALL
COMP
cos
DIM
EXP
FLOAT
IABS
IDIM
IFIX
INT
ISIGN
MAXO0
MAX1
MINO
MIN1
MOD
RAND
SIGN
SIN
SORT
TAN

where:

APPENDIX 3

TABLE OF FUNCTIONS

Definition

lal

sign(a)* Ix| where x is the
largest integer <= a

Natural log

Log base 10

Maximum

Maximum

Minimum

Minimum

al—sign(x)*lx | *a2 where x = al/a2
x = arctan(a) -PI/2<= x= >PI/2
x = arctan(al/a2) -Pl/2<= x= >P1/2
Execute assembly routine
Compare strings

Cos{a) a in radians

al-min(al, a2)

e to the power exp

Make real

Absolute value

al - min(al,a2)

Truncate

sign(a)*Ix 1 where x = largest integer <=a

Sign

Maximum
Maximum
Minimum
Minimum
al-sign(x)* Ix | *a2 where x= al/a2
Random number
Sign

Sin(a) a in radians
Square Root
Tan(a) a in radians

Number of Type of
Arguments Arguments

1
1

1

1
Up to 254
Up to 254
Up to 254
Up to 254

2

— e BND e = = BN = W0 N DND

1
Up to 254
Up to 254
Up to 254
Up to 254
2

[R —

a = argument

al = first argument
a2 = second argument

A3-1

Real
Real

Real
Real
Integer
Real
Integer
Real
Real
Real
Real
Either
Either
Real
Real
Real
Integer
Integer
Integer
Real
Real
Integer
Integer
Real
Integer
Real
Integer
Real
Real
Real
Real
Real

Type of
Result

Real
Real

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Integer
Integer
Integer
Integer
21,0, + 1
Integer
Integer
Integer
Integer
Integer
Real
-1.,0., + 1.
Real
Real
Real

FORTRAN

APPENDIX 4

DEVICE INTERFACE

If you want to interface with data input or output devices such as tape units or line printers, you can use the

PTDOS Device File feature described in section 3 of the PTDOS User’s Guide.

The device file must have the format described and perform all the necessary port assignments, bit assign-
ments, etc. You can then access the device from a FORTRAN program by opening the device file and
performing input or output. For example, the following statements read data from tape using device file
CTAPE2, which is listed in Appendix C of the PTDOS User’s Guide as an example of a device file:

DIMENSION A{100)

CALL OPEN(2, 'CTAPE2')
READ (2, %) (A(I),I=1,100)

A4-1 FORTRAN

APPENDIX 5

COMPILATION ERROR MESSAGES

Errors that occur during compilation are indicated in the list file by either an error code or an error message.

Error codes are listed if you specify G as an option in the OPTIONS declaration; otherwise error messages are
listed. The following are PTDOS FORTRAN compilation error codes and messages:

00 *FATAL* compiler error

01 Syntax error, 2 operators in a row

02 unexpected continuation

03 input buffer overflow

04 invalid character for FORTRAN statement
05 unmatched parenthesis

06 statement label > 99999
07 invalid character in label field
08 invalid HEX digit in constant

09 expected constant or variable not found

oA 8 bit overflow in constant

0B unidentifiable statement

ocC statement not implemented

0D missing quote

0E SUBROUTINE/FUNCTION/BLOCK DATA not first in routine
OF columns 1-5 of continuation not blank

10 invalid label

11 RETURN not valid in main program

12 syntax error on unit specification

13 missing comma after } in COMPUTED GO TO

14 missing variable in COMPUTED GO TO

15 invalid variable in assigned GO TO

16 invalid LITERAL, missing quote

17 number of subscripts declared exceeds max of 7

18 invalid SUBROUTINE or FUNCTION name

19 subscript not POSITIVE INTEGER CONSTANT

1A FUNCTION requires at least one argument

1B syntax error

1C invalid argument in SUBROUTINE or FUNCTION call
1D first character of variable not alphabetic

1E ASSIGNED/ COMPUTED GO TO variable not type integer
1F label already defined

20 specification of array must be integer

21 invalid variable name in type specification

22 invalid DIMENSION specification

23 dimension specification not integer or is negative

24 variable already appeared in type statement
25 invalid subroutine name in CALL

26 SUBPROGRAM arg. can’t be initialized

27 improperly nested DO loops

28 unit not integer constant or variable
29 Array size exceed 5461 elements
2A invalid use of unary operator

2B variable DIMENSION not valid in main program

AS5-1 FORTRAN

2C
2D
2E
2F
30
31

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41

42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51

52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61

62
63
64

variable dimensioned array must be argument
DO, END or LOGICAL IF cannot follow LOGICAL IF
undefined label

WARNING: unreferenced label

FUNCTION or ARRAY missing left parenthesis
invalid argument of FUNCTION or ARRAY
DIMENSION spec. must appear before executable stmnts
unexpected character in expression

unrecognized logical opcode

parm count error on built-in FUNCTION or ARRAY
* COMPILER ERROR * poped off bottom of operand stack
expecting end of statement, not found

statement too complex, increase P= and/or O= tables
invalid delimiter in ARITHMETIC IF

invalid statement number in IF

HEX constant > FFFF (HEX)

replacement not allowed within IF

multiple assignment statement not implemented
subscripted-subscripts not allowed

subscript stack overflow, increase P= or O=
missing left (in READ/WRITE

invalid unit specified

invalid FORMAT number

invalid element in 1/0 list

built-in function invalid in 1/0 list

cannot subscript a constant

variable not dimensioned

invalid subscript

missing comma

index in IMPLIED DO must be a variable

invalid starting value for IMPLIED DO

ending value of IMPLIED DO invalid

increment of IMPLIED DO invalid

illegal use of built-in function

variable cannot be dimensioned in this context
invalid EOF or ERROR exit label

invalid constant

exponent overflow in constant

invalid exponent

character after . invalid

integer overflow

integer underflow (too small)

missing = in DO

string constant not allowed

invalid variable in DATA list

DATA symbol not used in program, line

invalid constant in DATA list

error in DATA list specification

built-in function in DATA list

no filename specified on COPY

runtime format not array name

dump label invalid or more than 10 characters
more than 1 IMPLICIT is invalid

IMPLICIT not first in main, 2nd in subprogram
data type not REAL, INTEGER, or LOGICAL
illegal IMPLICIT specification

improper character sequence in IMPLICIT

A5-2

FORTRAN

65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71

72
73
74
81

82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91

92

variable already dimensioned

Q option must be specified for ERRSET/ERRCLR
HEX constant of zero (0} invalid in I/0 stmnt
argument cannot be in COMMON

illegal COMMON block name

variable already in COMMON

array specification must preceed COMMON
executable statement is invalid in BLOCK DATA
HEX constant of 27H (’} invalid in FORMAT
Invalid number following STOP or PAUSE

NOT USED

NOT USED

NOT USED

invalid label in assigned GO TO

invalid variable in assigned GO TO

THROUGH 80 ARE NOT USED

FATAL missing SOPTIONS statement
FATAL missing = in $OPTIONS statement
FATAL invalid digit in number in $OPTIONS
FATAL value exceeds 255 in SOPTIONS
FATAL COMMON table overflow, increase C=
FATAL unknown option (letter before =)
FATAL missing END statement

FATAL LABEL TABLE overflow, increase L=
FATAL SYMBOL TABLE overflow, increase S=
FATAL ARRAY STACK overflow, increase A=
FATAL DO LOOP STACK overflow, increase D=
*FATAL¥ stack overflow

FATAL stack overflow

FATAL internal stacks exceed available memory
FATAL MEMORY ERROR (address in HL of ABORT)
FATAL OPEN error on COPY file

FATAL too many routines to compile (> 62)
FATAL no more room to store DATA statements

A5-3

FORTRAN

APPENDIX 6

EXECUTION ERRORS

Execution, or runtime, errors may occur during execution of a program that compiled correctly, causing
termination of that program. An execution error causes an error message to be displayed. Execution error
messages have the form:

RUNTIME ERROR error message, CALLED FROM LOC. location

PGM WAS EXECUTION LINE line number IN ROUTINE routine name
where:
error message is one of the messages shown below.
location is the memory location of the error-producing call to the runtime package.

line number specifies the line in which the error occurred if the X option was selected in the OPTIONS
declaration; otherwise the line number is ? ? ? 7. The line numbers are shown on the source listing
from the compiler (if present, the OPTIONS declaration is line 1).

routine name is the name of the routine in which the error occurred.
If several line numbers are listed in the error message, the error actually occurred in the first line specified.

The error messages that may occur during execution are:

Message Meaning
/0 DIVIDE BY ZERO
Attempted to divide by zero.
ASN GOTO ASSIGNED Go TO ERROR
Address assigned not in list behind it.
CALL POP CALL STACK POP ERROR

A RETURN that does not have a corresponding CALL or
FUNCTION reference has been executed. This error is usually
caused by user assembly language programs.

CALL PSH CALL STACK PUSH ERROR
Caused by more than 62 recursive subprogram calls. Avoid having a
subprogram call itself or call a routine that called it.

CHAN OPN UNIT ALREADY OPEN
Attempted to open a file on a FORTRAN unit that is already open.
COM GOTO COMPUTED GO TO INDEX OUT OF RANGE

The variable specified in a computed GO TO is either less than one
or greater than the number of statement labels specified.

CONVERT 16 BIT CONVERSION ERROR
An overflow occurred while converting a number to internal 16-bit
binary form. This error can occur when converting the unit number
in input/output statements, evaluating subscripts, or converting
floating-point numbers to 16-bit binary form.

FILE OP FILE OPERATION ERROR
An error from any of the system subroutines that deal with PTDOS

AB-1 FORTRAN

FRMT ERR

I/0 ERR

I/0 LIST

ILL CHAN

INP ERR

INT-OVER

LNE LENG

LOG(—#)

NOT OPEN

OPEN ERR

OVERFLOW

PARM CNT

files generates this message. The error could result from such things
as an invalid file name, spacing beyond the beginning or end of a
file, etc. The PTDOS UTIL function supplies a detailed explanation
of the error and lists the PTDOS operation that was in error. The
UTIL routine destroys part of the FORTRAN runtime package (that
part located in CXBUF). If you want to rerun your program after
executing UTIL, you must first reload the program from disk.

FORMAT ERROR
A formatted READ or WRITE referred to an invalid FORMAT
specification.

I/0 ERROR

An error occurred during a READ or WRITE operation. This
message is generated if there is no error label specified in the
statement. In addition, a READ statement with no end-of-file label
generates this message if an end of file is encountered. The PTDOS
UTIL function supplies a detailed explanation of the error.

INVALID 1/0 LIST

A formatted READ or WRITE statement has an error in the input or
output list. This error only occurs when a user assembly program
does not construct the input or output list correctly. It never occurs

from FORTRAN-generated code.
ILLEGAL UNIT NUMBER

A unit number that is less than 2 or greater than 15 has been passed
to one of the input/ output routines.

INPUT ERROR

An invalid character has been encountered while reading a number.
Possible causes are two decimal points in a number, an E in an F-
type field, a decimal point in an I-type field, etc.

INTEGER OVERFLOW

An integer value has more than eight digits.

LINE LENGTH ERROR
Attempted to read or write a record more than 250 characters long.

This count includes a carriage return at the end of a line and (for
ALSS files) the byte count.

LOG OF NEGATIVE NUMBER
ALOG or ALOG10 was called with a negative argument.

UNIT NOT OPEN

Attempted to read, write, rewind, or perform some operation on a

FORTRAN unit number that is not open.
OPEN ERROR

An error occurred during execution of an OPEN statement. This
message encompasses all open errors except for a nonexistent file.
For information about which open error occurred, use the PTDOS
UTIL function.

FLOATING POINT OVERFLOW
The result of a floating-point operation resulted in a number too
large to be stored.

PARAMETER COUNT ERROR

A subprogram call had too many or too few arguments.

A6-2 FORTRAN

SET UNIT SET UNIT ERROR
An error occurred while changing the default unit (drive). Use the

UTIL function for more information.

SORT (-#) SQRT OF NEGATIVE NUMBER

The argument of the square root function is negative.

A6-3 FORTRAN

APPENDIX 7

COMPARISON OF PTDOS AND ANSI STANDARD FORTRAN

The PTDOS FORTRAN language includes the following extensions to version X3.9-1966 of ANSI Standard

FORTRAN:

1. Free-format input and output.

2. An IMPLICIT statement for the implicit typing of variables and functions.

3. Character string data type and a string comparison function.

4. Optional end-of-file and error branches in READ and WRITE statements.

5. A COPY statement to copy files of source statements into a FORTRAN source program.

6. Assembly-language interface. Assembly-language state- ments can be included in the
source file and assembly routines can be called from the FORTRAN program.

7. File management from the FORTRAN program, including creating, killing, and changing
attributes.

8. Random access to data files.

9. Input from and output to device files.

10. Direct control over the video display.

11. Access to absolute memory locations, including individual bits.

12. Program-controlled time delay.

13. A pseudo-random number generator function.

14. Program control of runtime error trapping.

15. Ability to chain a sequence of programs.

PTDOS FORTRAN does not have the following features of ANSI standard FORTRAN:

1.

W

Double precision, including double-precision functions, statements and format
specifications.

Complex numbers, including complex statements and functions.
EQUIVALENCE

Extended DATA statement. ANSI FORTRAN allows DATA statements such as:

DATA X,Y,2/10,20,30/
In PTDOS FORTRAN this statement would have to be changed to:

DATA X/10/,¥/20/,2/30/

Hollerith field specifications are not available in FORMAT or DATA statements. They
must be replaced with character strings.

. The following format specifications are not available: carriage control characters, D, G,

H, and P.

Statement functions are not available.

Only the first five characters of function or subroutine names or COMMON labels are
retained. For example, PTDOS FORTRAN does not differentiate between MYSUB1 and
MYSUB2.

The following cannot be used for subroutine, function, or COMMON names: A, B, C,
D, E, H, L, M, SP, PSW, or any PTDOS reserved name contained in the file
PTDEFS.

A7-1 FORTRAN

10.

APPENDIX 8

BIBLIOGRAPHY

Computer Science: Fortran Language Programming
Forsythe, Keenan, Organick, and Stenberg
John Wiley & Sons, Inc. 1970

FORTRAN 1V, Second Edition
Elliott I. Organick and Loren P. Meissner
Addison-Wesley Publishing Co. 1966

FORTRAN IV with WATFOR and WATFIV
Cress, Dirksen, and Graham
Prentice-Hall, Inc. 1970

Fundamental Algorithms, Second Edition
Donald E. Knuth
Addison-Wesley Publishing Co. 1973

A Guide to FORTRAN Programming
Daniel D. McCracken
John Wiley & Sons, Inc. 1961

History and Fundamentals of Programming Languages
Jean E. Sammet

Programming Proverbs for FORTRAN Programmers
Henry F. Ledgard
Hayden 1975

Standard FORTRAN: A Problem-Solving Approach
Laura Cooper and Marilyn Smith
Houghton Mifflin Company 1973

The Elements of Programming Style
Brian W. Kernighan and P. J. Plauger
McGraw-Hill Book Co. 1974

Software Tools
Brian W. Kernighan and P. J. Plauger
Addison-Wesley Publishing Co. 1976

A8-1

FORTRAN

ProcessorTechnology

Processor Technology 7100 Johnson Industrial Drive (415) 829-2600
Corporation Pigasanton, CA 94566 Cable Address-PROCTEC

Extended Disk FORTRAN Update
Subject: Additional Programs on FORTRAN Diskette

The FORTRAN diskette which this update accompanies includes six files
not described in the Extended Disk FORTRAN manual: ASSM, CLOCK.F,
DIGIT, STAT.F, CMPLX.F, and SOLGO which is information-protected.

The file ASSM is an updated version of the disk assembler that must be
used with the FORTRAN compiler. Since it is appreciably faster than
the previous version, you will probably want to use it for any future
assembly language programming as well. The ASSM command syntax has
not changed, and the ASSM Subsystem Manual applies without update.

With a PTDOS system diskette in unit # (make sure you have a backup)
and the FORTRAN data diskette in unit 1, the o0ld version may be
replaced with the PTDOS command line:

*REATR ASSM; GET /6, I=/1, ASSM, S=-I; REATR ASSM,KWINE <CR>

The asterisk * is the prompt provided by PTDOS. <CR> represents the
typing of the CARRIAGE RETURN key.

The file CLOCK.F 1is the FORTRAN source code for a digital clock
demonstration program that uses the PLOT subroutine to directly place
a clock display on the video screen. The display is updated every
five seconds. Before creating an executable image file, which will be
called CLCCK, you must move the data file DIGIT to unit @ where CLOCK
expects to read it. With the FORTRAN diskette in unit 1 and a PTDOS
system diskette in unit @, use the following PTDOS command:

*COPY DIGIT/1, DIGIT <CR>
Now CLOCK.F may be compiled and run with the PTDOS command line:
*FORTRAN CLOCK.F/1l,,,CLOCK; CLOCK <CR>
The above command line creates an image file CLOCK on the default
unit (normally unit @) from the FORTRAN source file CLOCK.F on unit 1.
CLOCK may be rerun later by merely typing its name:

*CLOCK <CR>

731040A page 1 of 2 7/78 Ref. ECN 16377

Wwhen CLOCK begins executing, it will ask whether 12 hour or 24 hour
format is desired and what the starting time is to be. A starting
time 30 to 66 seconds in the future should be specified to the nearest
ten seconds; the seconds unit's position must be #. When an accurate
time reference reaches the specified starting time, type any key.
CLOCK will begin running at the specified time. Pressing the MODE key
or the CONTROL and @ keys together will abort CLOCK and return control
to PTDOS.

The value of IFACT, initialized near the beginning of the program, is
used to control the clock's timing. It may have to adjusted slightly
to regulate the speed of the clock. Increase IFACT if the clock runs
fast; decrease it if the clock runs slow.

The file STAT.F is the FORTRAN source code for a demonstration program
that performs a simple statistical analysis of data contained in a
user-specified file. It may be compiled and run by typing the PTDOS
command line:

*FORTRAN STAT.F/1,,,STAT; STAT <CR>
and rerun later by typing the command:
*STAT <CR>

When STAT begins execution, it will ask for the name of a data file to
analyze and whether or not the user desires an ordered listing of the
data on that file. It then produces a self-explanatory statistical
summary on a file chosen by the user. The data file read by STAT is
simply a collection of at least 1@ and no more than 30088 numeric
values separated by carriage returns. These values may be integer,
floating point, or exponential values since they are read by a
free-format READ statement. See Section 5.5.1. of the manual before
creating a data file.

The file CMPLX is the FORTRAN source code for a set of subroutines
that perform complex addition, subtraction, multiplication, division,
absolute value, sguare root, and can also be used for conversion
between rectangular and polar coordinates. They may be included in a
user-written program by means of a FORTRAN COPY statement.

The last file, SOLGO, is an information-protected bonus program. Its
purpose will be revealed in the future. Do not KILL it, but do not
ask about it yet.

731048A page 2 of 2 FORTRAN

PrOcessorTechnology

Processo_r Technology 7100 Johnson Industrial Drive (415) 828-2600
Corporation Pieasanton CA 94566 Cable Address PROCTEC

FORTRAN Update No. 2

February 27, 1979
FORTRAN UPDATE

SUBJECTS:

Distinction between "terminal” and "console" in Extended Disk FORTRAN
Errata and Addenda to Extended Disk FORTRAN User's Manual, Revised
Descriptions of Subroutines, Appendices 6 and 7.

MANUALS AFFECTED:

Extended Disk FORTRAN User's Manual, Manual Part No. 727101

CURRENT PUBLICATIONS:
731040
With the information contained in this update, the Extended Disk

FORTRAN User's Manual describes Extended Disk FORTRAN, Release 1l.1.
(Without the update, the manual describes Release 1.0.)

The modifications described herein are of several sorts. Some are
errata to the existing documentation; others, addenda reflecting
improvements that have generated Release 1.1 of FORTRAN from

Release 1.0. Still others are elaborations whose intent is to

clarify certain aspects of FORTRAN not treated at length, or not given
emphasis in the Extended Disk FORTRAN User's Manual.

Short revisions have been keyed to the pages in the manual where they
should appear. The errata and addenda in the second part of the
update are of this type. Longer revisions have not been keyed to
pages; for the most part, they replace recognizable counterparts in
the existing manual (e.g., the new description of a subroutine
replaces the description of that subroutine in the manual). The
treatment of "terminal" and "console," below, is a supplement to the
manual, rather than a revision of existing material.

731077 page 1 of 25 2/27/79 Ref. ECN 10513

DISTINCTION BETWEEN "TERMINAL" AND "CONSOLE" IN EXTENDED DISK FORTRAN

The word "terminal," as used in the FORTRAN User's Manual, does not
have exactly the same meaning as the word "console." The terminal
comprises logical units 0 and 1, which may or may not correspond to
the console input and output devices, respectively.

FORTRAN logical units 0 and 1 are permanently associated with the
PTDOS Command Interpreter (CI) input and output files. (See the PTDOS
User's Manual.) When the system is bootstrapped, the CI input file is
file #0, the console input device, and the CI output file is file #1,
the console output device. If nothing is done to change those
settings, the FORTRAN ACCEPT and READ(0,...) statements will refer to
the console input file, and the TYPE and WRITE(l,...) statements will
refer to the console output file. In this case, the "terminal" will
actually correspond to the "console."

In other cases, the CI input and output files are not associated with
PTDOS files #0 and #1, i.e., the "terminal" does not actually
correspond to the "console." The PTDOS SETIN and SETOUT commands
explicitly change the assignment of CI input and output files; the CI
input file assignment may be changed implicitly and temporarily by
the DO command macro preprocessor.

If the CI input file assignment has been changed, the FORTRAN ACCEPT
and READ(0,...) statements no longer refer to the console input
device. Likewise, if the CI output file assignment has been changed,
the FORTRAN TYPE and WRITE(l,...) statements no longer refer to the
console output device. For example, if a FORTRAN program is executed
as part of a command file (which automatically becomes the CI input
file), an ACCEPT statement in that program will expect its input not
from the console, but from the command file. Similarly, if CI output
has been directed to a disk file, TYPE will send its output to that
disk file, rather than to the console.

Unlike the TYPE and ACCEPT statements, READ and WRITE may use the
console input and output files, respectively, even if logical units O
and 1 are not currently associated with those files. The special file
names S$SCONIN and $CONOUT, recognized by FORTRAN, always refer to the
console, PTDOS files #0 and #1. If you wish to write a FORTRAN
program that will take its input from the console, even if the CI
input file has been changed, use the OPEN statement to associate a
logical unit (other than 0 or 1) with $CONIN, and READ from that
unit. If you want to guarantee that the output from a program will go
to the console, even if CI output has been redirected, use the OPEN
statement to associate a logical unit (other than 0 or 1) with
$CONOUT, and WRITE to that unit. (The reason not to use 0 or 1 is
that those unit numbers will already be associated with the current
CI input and output files.)

731077 page 2 of 25 2/27/79 FORTRAN

ERRATA AND ADDENDA TO EXTENDED DISK FORTRAN USER'S MANUAL

The following changes should be made on the specified pages of the
manual.

p 1-3
Add the following to the list of files required to use PTDOS FORTRAN:

RFORTGO -~ FORTGO ORGed above DO0O0OH
FORTDEFR - definitions for use with RFORTGO

Add FORTDEFR to the list of files residing on the default unit. Add
RFORTGO to the list of files residing on unit 0.

p 2-1
Replace the text of Section 2.1.2 with the following:

If a statement is too long to fit on a single line, it may be
continued on one or more additional lines. Each continuation line
must have a character other than blank or 0 in column 6 and blanks in
columns 1-5.

If a character string is continued, its interpretation depends on
whether or not the P=n parameter was specified on the FORTRAN command
line. If this parameter is omitted, the statement lines are not
padded with blanks between the final carriage return and column 72.
For example, the statement

TYPE 'THIS STATEMENT IS CONTINUED<CR>
* BELOW'

outputs the line

THIS STATEMENT IS CONTINUED BELOW
to the terminal.
If P=72 appeared in the FORTRAN command line, the line output by the
above example would have 24 blanks separating the last two words.
(If P=64 appeared, there would be 16 blanks.)
p 2-3
Add the following at the bottom of the page:
It is also possible to specify a string constant in Hollerith format,
i.e., by preceding the string with a decimal number and an H. The
number specifies the length of the string that follows the H. No

terminal delimiter is used. For example:

28HTHIS IS A HOLLERITH CONSTANT

731077 page 3 of 25 2/27/79 FORTRAN

p 2-4

In the fourth paragraph of Section 2.2.2, delete the phrase "but you
can only assign up to four characters to an integer variable using an
assignment statement."

Replace the last paragraph with the following:

A variable may not have the same name as one of the system functions
listed in Appendix 3. In addition, COPY may not be used as a variable
name.

p 3-2

Add the following to the first paragraph of Section 3.2:

The source program may be composed of no more than 62 routines,

including the main program. System subroutines and functions
referenced by the program are not included in this count.

p 3-3

Add the following to the second paragraph:

The $§ preceding an OPTIONS declaration is optional.

p 3-4
Replace the description of the X option with the following:

Causes line numbers to be listed during execution tracing or when a
runtime error occurs.

p 4-2

Add S=R and P=n to the list of options allowed in the FORTRAN command
line.

Add the following to Section 4.1.1:
S=R

The S=R parameter specifies that the runtime package used by the
quick-compile option will be loaded above DOOOH.

P=n
The P=n parameter specifies that input lines will be blank-padded out

to column number n. (A carriage return will be converted to a blank
also.) The only values allowed for n are 64 and 72.

731077 page 4 of 25 2/27/79 FORTRAN

p 4-4

Add SET UNIT to the list of runtime errors that may be caused by
PTDOS operations.

Replace the second paragraph of Section 4.2.2 with:

PTDOS extends downward in memory from BFFFH to 9000H or below,
depending on the size of the system-managed buffer area. The SOLOS
ROM and scratchpad memory occupy the space from CO00H to CBFFH, and
the video display memory (Sol or VDM) extends from CCOOH to CFFFH.
(See the PTDOS User's Manual for further information on memory
management.) A compiled FORTRAN program normally resides in user
memory from 100H to the bottom of the PTDOS buffer area (e.g.,
9000H) . However, in a system with 64K of memory, the 12K extending
from DO0O1H to FFFFH is also available as user memory.

p 5-2

Replace the last paragraph of the description of assignment
statements with the following:

A character string with as many as six characters may be assigned to
a variable or array element.

p 5-10
Replace the list of codes and messages with the following:
The error codes and corresponding runtime error messages are:

INTEGER OUT OF RANGE

16 BIT CONVERSION ERROR
ARGUMENT COUNT ERROR
COMPUTED GOTO INDEX OUT OF RANGE
FLOATING POINT OVERFLOW
DIVIDE BY ZERO

SQRT OF NEGATIVE NUMBER

LOG OF NEGATIVE NUMBER

CALL STACK PUSH ERROR

10 CALL STACK POP ERROR

11 FILE OPERATION ERROR

12 ILLEGAL LOGICAL UNIT NUMBER
13 LOGICAL UNIT ALREADY OPEN
14 OPEN ERROR

15 LOGICAL UNIT NOT OPEN

16 SET UNIT ERROR

17 LINE LENGTH ERROR

18 INVALID FORMAT

19 I/0 ERROR

20 INPUT ERROR

21 INVALID I/O LIST

22 ASSIGNED GOTO LABEL NOT IN LIST

OWoOIOU WM

The runtime error messages are explained in Appendix 6.

731077 page 5 of 25 2/27/79 FORTRAN

p 5-16

Replace the second sentence of the section entitled
"Field Specifications: string” with the following:

Strings appearing in FORMAT statements may be delimited by single
guotes or expressed in Hollerith format, i.e., with a preceding
length count and H.

p 5-19

Add the following:

Field Specifications: Tw

The T tabs within the current record: i.e., the pointer specifying
the next character to be input or output is positioned at character w
of the input or output record. (The first character is numbered 1.)

For example:

READ (0,10) I,J,K,I2
10 FORMAT (3I1,T1,Il)

In this example, the first, second, and third digits are read into
variables I, J, and K, respectively. Then the pointer is moved back
to character position 1 in the input line, so that the first digit is
read again, this time into variable I2.

p 5-21

The second sentence in the first paragraph of Section 5.5.3 should
end:

"...associate a logical unit number with the file name.”

The following should be added to the end of that paragraph:
Logical unit numbers may range from 0 to 63. Logical units 0 and 1
refer to the PTDOS Command Interpreter input and output files,

respectively.

The section entitled "File Unit Numbers" should be deleted.

p 5-26
Add the following to Section 5.5.5:

Unlike the formatted READ and WRITE statements, binary READ and WRITE
statements cannot have empty input and output lists. (Such
statements would have no effect.)

731077 page 6 of 25 2/27/79 FORTRAN

Add the following section:
5.5.6 DECODE and ENCODE Statements

The FORTRAN WRITE statement, discussed above, is a way of converting
variables of different types and lengths, as well as literals, into a
character string that appears either on an output device or in an
output file. Conversely, the READ statement interprets a character
string existing in an input file (or device), so that the components
of that string may be manipulated separately within the FORTRAN
program. PTDOS FORTRAN offers two statements whose operation is
similar to that of WRITE and READ, except that the character string
is situated in memory, rather than on an external device or file.

DECODE is like READ; it translates a character string into a series
of values and assigns those values to items in an input list. It
differs from READ in that the record being "decoded" is a string in
memory, rather than a string typed on the console or read from
another file.

ENCODE is like WRITE; it builds a character string from a series of
values whose names are given in an output list. It differs from
WRITE in that the record being "encoded" is put into a string in
memory, rather than written on the display device or another file.

DECODE Statement
General form:
DECODE (string,length,format) input list

Under control of the specified format,
interprets the character string in
string, and assigns values to variables
in the input list.

where string 1is a variable name or array name (not an array
element) specifying the beginning address of the

character string; _
length 1is a number or variable specifying the length of the

string in bytes, or the length of each record, if the
format prescribes multiple records;

format 1is a format number or the name of a variable or array
containing the format to be used, or an * to indicate
free format; and

input list is a list of the variables into which the values
derived from the character string will be placed.

Format and input list are subject to the same restrictions as
in the READ statement.

DECODE is similar to READ. The character string beginning at
location string and continuing for length bytes is read into the
variables in the input list, according to the prescribed format. For
example, the sequence of statements

731077 page 7 of 25 2/27/79 FORTRAN

C DECODE DATE INTO MONTH, DAY AND YEAR SO THAT JULIAN DATE MAY BE
C CALCULATED. EVERY TWO MEMBERS OF DATE CONTAIN A STRING OF THE FORM
C MM/DD/YY.
DIMENSION DATE (2)
DECODE (DATE, 8,2000) MONTH, IDAY, IYR
2000 FORMAT(I2,1X,I2,1X,I2)

will result in the assignment of the appropriate two-digit integers
to the items in the input list. For example, if the string beginning
at DATE(l) consists of the characters 12/08/75, MONTH will receive a
value of 12, IDAY will receive a value of 8, and IYR will receive a
value of 75. (The slashes will not be assigned, because the 1lX's in
the format cause them to be ignored.)

It is possible to DECODE a character string consisting of multiple
records, if the format contains slashes (/). In that case, a slash
indicates that the next item in the list should be read from the next
record of the string, i.e., from the next group of length bytes in
the string. For example, the string

' ABCDEFGHIJ'

might be decoded as a single record of length 10, or as multiple
records, e.g., two records of length 5.

If a record in string is not as long as the format and input list
would suggest - that is, if length is less than the number of
characters required to satisfy the list - the rest of the input list
will be filled as though there were additional blanks in the input
record: string variables will be blank-filled, and numeric variables
will be zero-filled. If a record is longer than the format and

input list would suggest - that is, if length is greater than the
number of characters required to satisfy the list, the list will be
satisfied, and the rest of the record will be ignored.

ENCODE Statement
General form:
ENCODE (string,length,format) output list
Under control of the specified format,
constructs a string consisting of the

values named in the output list, and
places that string in string.

731077 page 8 of 25 2/27/79 FORTRAN

where string is a variable name or array name (not an array

element) specifying the beginning address of the
character string;

length is a number or variable specifying the length of the
string in bytes, or the length of each record, if the
format prescribes multiple records;

format is a format number or the name of a variable or array
containing the format to be used, or an * to indicate
free format and

output list is a list of the variables whose values will be
used to construct the character string.

Format and output list are subject to the same restrictions as
in the WRITE statement.

The ENCODE statement is similar to WRITE. The values corresponding
to the items in the output list are written, in order and according
to the prescribed format, to memory locations beginning at string.
For example, after the sequence of statements

C ENCODE A SUBTITLE IN ARRAY SBTITL

C
DIMENSION SBTITL(3)
DATA IAREA /5/, IREG /'WEST '/
ENCODE(SBTITL,14,1000) IAREA, IREG
1000 FORMAT('AREA ',Il,' - ',A5)

SBTITL will contain the character string AREA 5 - WEST . Notice that
literals indicated in the format, as well as values named in the
output list, are represented as characters in SBTITL.

The value of the length argument determines the length of the output
record. If the string defined by the output list and format is
longer than the specified number of bytes, only length bytes will be
written to the output record, and the rest of the output list will
not be encoded. If the string defined by the output list and format
is shorter than the specified number of bytes, the remainder of the
output record will be padded with blanks.

It is possible to ENCODE a character string consisting of multiple
records, if the format contains slashes (/). In that case, the
records are stored sequentially, and each record is length characters
long. Records will not end with carriage returns; unless a carriage
return is included explicitly in the format, i.e., as an ASCII value
between backslashes in a literal string, no carriage returns will be
put into string.

p 5-31
Thg first sentence should end:
" ... filled with blanks on the right."

In the subsequent example, change "nulls" to blanks."

731077 page 9 of 25 2/27/79 FORTRAN

p 5-32

Add the following to the description of the COMMON statement:

If an array name appears in a COMMON statement without dimension
information, it must be dimensioned in a preceding DIMENSION,
INTEGER, REAL, or LOGICAL statement.

p 5-40

Add the following:

5.9 EXECUTION TRACING

PTDOS FORTRAN provides an execution tracing facility for use in
debugging programs. If tracing is enabled, FORTRAN will 1list on the
console the name of each subprogram as it begins execution. In
addition, for any routine that contains an OPTIONS declaration
including the X option, the line number of each statement executed
will be listed on the console. The line number displayed upon entry
to a subprogram is always ?2222.

The form of the messages displayed on the console is:

Pgm is executing line number in routine name

where number is the line number (or ???? upon entry to a subprogram),
and name is the name of the routine being executed.

Execution tracing is enabled and disabled by means of the following
statements:

General form:

TRACE ON Enables execution tracing.
TRACE OFF Disables execution tracing.

p 6-1

In the third sentence of Section 6.1.1, delete the phrase "or chains
to another program." After that sentence, add the following:

Open files will be closed automatically by the CHAIN subroutine

unless its second argument is negative (see Section 6.4).

p 6-2

Delete the paragraph beginning "READ and WRITE statements ...",
including the example.

731077 page 10 of 25 2/27/79 FORTRAN

p 6-4
Section 6.1.2 implies incorrectly that the SPACE subroutine may be

used to position only random files. In fact, it is not necessary to
call RANDOM (or use the PTDOS RANDOM command) before calling SPACE,

p 6-7

Change the type to 'T' in the first example of use of the CREATE
subroutine.

Replace the second sentence describing the CREATE subroutine with the
following:

Only the first character of the string specifying the file type will

be used; it is not possible to create an image file with the CREATE
subroutine.

p 6~-8

Add the following to the description of the CHTYPE subroutine:

Only the first character of the string specifying the file type will
be used; it is not possible to specify an image type with CHTYPE.

Replace the second and third sentences describing the CHATTR
subroutine with the following:

Each attribute is represented by one of the bits in a single byte
value; a specific attribute will be set if the corresponding bit is a
one. The value that will set a desired combination of attributes may
be constructed by adding the appropriate values from the following
list.

p 6-9

The program example at the bottom of the page is actually an example
of the use of the CHATTR subroutine.

p 6-11

Change the title of the first box to "CIN Subroutine."

p 6-12

Replace the last two paragraphs describing the PLOT subroutine with
the following:

If PLOT is called with no arguments, the screen is cleared and a zerc
is output to the video display scroll control register. This action
forces memory location CCOOH to be displayed at the upper left-hand
corner of the screen. If the video display is provided by a VDM-1,
its screll control port address must be set to either C8H or FEH.

731077 page 11 of 25 2/27/79 FORTRAN

p 7-1
The description of the ISIGN function should read:

The sign of exp; +1 if positive, -1 if negative, 0 if zero.

p 7-2

Delete the "f" preceding AMOD in the first example.

p Al-1 and Al-2
Add the following entries to the statement summary:

DECODE (string,length,format) input list
Reads values from the
character string in string
and assigns them to
variables in the input list.

ENCODE (string,length,format) output list
Writes values from the

output list to string.

TRACE ON Enables execution tracing.
TRACE OFF Disables execution tracing.
p A2-1

The following entries replace those in the list:

CALL BIT(var,disp,'op'{,result}) Sets, resets, flips, or
tests a single bit.

CALL CBTOF (loc,disp,var{,flag}) Converts a binary number to
its floating point
equivalent.

CALL CHAIN ('program name'{,action}) Chains to another program.

Add the following entry to the list:

CALL OUT (port,value) Outputs value to a port.

731077 page 12 of 25 2/27/79 FORTRAN

p A5-3

Make the following changes in the list of compilation error codes:

6F Illegal trace statement

71 Comma missing in ENCODE or DECODE statement
74-7F NOT USED

80 *FATAL* no program to compile

p A8-1

Reference 6 should be:

Programming Languages: History and Fundamentals
Jean E. Sammet
Prentice-Hall, Inc. 1969

REVISED DESCRIPTIONS OF SUBROUTINES, APPENDICES 6 AND 7

The following descriptions--as well as the revisions of Appendices 6
and 7--replace their counterparts in the manual. Where such a
counterpart does not exist, the subroutine or function was added to
FORTRAN after the release of the manual.

BIT Subroutine
General form:

CALL BIT (var, disp, ‘action' {,result})

/ N\ N\ N\
variable name \N S, R, F, or T \
expression variable name

Sets, resets, flips, or tests a single
bit of the variable var.

Examples:

CALL BIT (NEWVAR, O, 'S')
CALL BIT (COUNT, 1, 'T', Bl)

The BIT subroutine sets, resets, flips, or tests a single bit of the
variable var. The third argument specifies which action should be
taken.

'S' means set the bit to 1;

'R' means reset the bit to 0;

'F' means flip the bit, i.e., change 0 to 1 and vice versa

'T' means test the bit and return its value in the fourth
argument.

The fourth argument must appear if the third argument is 'T', and may
not appear otherwise.

731077 page 13 of 25 2/27/79 FORTRAN

The value of the expression disp determines which bit of var will be
affected. To determine the proper value for disp, consider the
internal format of a stored value:

byte byte byte byte byte byte

0 1 2 3 4 5
value= nn nn nn nn Os ee

/ /
sign exponent
Where each n is a digit, and each byte consists of 8 bits numbered 0
to 7, from right to left. The value to assign to disp is given by
the equation:
disp = (byte * 8) + bit
Where "byte" is the number of the desired byte (0 to 5), and "bit" is
the number of the desired bit (0 to 7) within that byte. For
example, to set the last bit of a value (i.e., bit 0 of byte 5), use
disp = (5 * 8) + 0 = 40
To set the first bit of a value (i.e., bit 7 of byte 0), use

disp = (0 * 8) + 7 =7

CBTOF Subroutine
General form:

CALL CBTOF (loc, disp, var {, flag})

/ / \ \

variable number of variable any

name or bytes value

memory

address Converts an 8- or l6-bit unsigned binary
number whose location is determined by loc
and disp into a floating point number, and
stores that number in the variable var.

Examples:

CALL CBTOF (BVAR,0O,DVAR)
CALL CBTOF (ARAY(1l,1),6,VAL(2))
CALL CBTOF (X,1,Y,1)

The CBTOF subroutine converts an 8- or 16-bit unsigned binary number
into its decimal floating point equivalent and stores the result in
var.

If disp is positive or zero, loc is assumed to be the variable or
array element that contains the binary form of the number. Disp
specifies the displacement in bytes from the first byte of loc to the
first byte of the binary number. For example, if the binary number
occupies the second and third bytes of loc, the value of disp should

731077 page 14 of 25 2/27/79 FORTRAN

be 1; if the binary number occupies the first byte of loc, the value
of disp should be 0.

If disp is negative, loc is assumed to contain or be an absolute
memory address. If loc is a variable name or array element, that
variable is assumed to contain the address of the first byte of the
binary number. To specify an absolute address as the first argument,
use the form Saddr, where addr is a hexadecimal address.

If flag is omitted, the binary number is assumed to be a 16-bit
quantity stored low-order byte first and ranging from 0 through
65535. If flag is present, the binary number is assumed to be an
8-bit quantity ranging from 0 through 255.

Program example:

DIMENSION A(4)

CALL FINFO('SUTIL',A)
CALL CBTOF(A(1l),0,ID)
CALL CBTOF(A(1l),6,NBLKS)
CALL CBTOF(A(l),12,BLKSZ)
WRITE(1,10) ID,NBLKS,BLKSZ

10 FORMAT('ID = ',I5,' # BLOCKS = ',bI5,
&' BLOCKSIZE = ',I5)
END

This program retrieves status information for disk file SUTIL in
binary form. It converts the information to decimal form and
displays it at the terminal.

CHAIN Subroutine

General form:

CALL CHAIN ('file'{,action}) Loads the specified file into
memory, and executes it if it
has a starting address.

Examples:

CALL CHAIN ('PART2')
CALL CHAIN ('OVERLAY1l',-1)

The CHAIN subroutine loads an image format file into memory at its
normal load address, and executes it if it has a starting address.
The specified file may be any existing image format file; because
CHAIN is used most frequently to chain FORTRAN programs, all of which
are loaded at 100H, the loaded program usually overwrites all or part
of the calling program.

If the specified file does not exist or if an error occurs during
loading, a FILE OP error occurs.

If the loaded program contains a starting address, it will begin
execution immediately at that address; if not, the CHAIN subroutine

731077 page 15 of 25 2/27/79 FORTRAN

will return control to the statement that follows the call to CHAIN.
If it is necessary to pass an argument to an assembly language
program that is loaded by CHAIN, that program should contain no
starting address and should be executed by the CALL function. (See
Section 7.4.)

If the loaded program does not overwrite the caller, an 8080 return
instruction will return control to the FORTRAN statement immediately
following the call to CHAIN. If it is necessary to return a value to
the calling program, an assembly language program loaded by CHAIN
should be executed by the CALL function.

The optional second argument of CHAIN may be used to specify whether
the runtime package is to be reloaded and whether or not files left
open by the calling program are to be closed by CHAIN. If the value
of the action argument is negative, the runtime package will not be
reloaded and open files will be left open. If the value of action is
greater than zero, the runtime package will not be reloaded and open
files will be closed. If action is equal to zero or is omitted, the
runtime package will be reloaded and open files will be closed.

Note that if the runtime package is not reloaded, a loaded FORTRAN
program must expect the runtime package to reside at the same
location as did the program that called CHAIN, i.e., neither or both
of them were compiled with the S=R option, and neither or both of
them were compiled with the long compile option.

Program Example:

Pl is the name of the image file containing the object code for the
following program:

TYPE 'THIS IS PART 1'
CALL CHAIN ('P2')
END

P2 is the name of the image file containing the object code for the
following program:

TYPE 'THIS IS PART 2'
END

Execution:

User: Pl <CR>
First program: THIS IS PART 1
Second program: THIS IS PART 2

STOP END IN - MAIN

731077 page 16 of 25 2/27/79 FORTRAN

CONTRL Subroutine
General form:

CALL CONTRL (unit,op,DEin,HLin,Aout,DEout,HLout)

/)N N/
logical unit operation \ values returned in
number code \ A,HL, and DE registers

N\

values supplied
in DE and HL
registers

Allows program control over devices or returns
information about devices.

Examples:

CALL CONTRL (0,2,0,'?',X,Y,2)
CALL CONTRL (FILE,4,0,$6500,X,Y,2)

The CONTRL subroutine provides a mechanism by means of which a
FORTRAN program can make a Control/Status (CTLOP) system call. The
CTLOP system call allows a user program to control a peripheral
device or obtain information about its status.

A detailed description of the various operations that may be
performed and the significance of the data supplied or returned in
the A, DE, and HL registers may be found in Sections 7.2 and 9.2.2 of
the PTDOS User's Manual, Second Edition.

Examples:

CALL CONTRL (0,2,0,'2?',X,Y,2)
Sets the console input prompt to 2.

CALL CONTRL (2,4,0,$6500,X,Y,2)
Moves the index block of the random file
associated with logical unit 2 from disk to
memory location 6500H.

Program Example:

IMPLICIT INTEGER (A-Z)
CALL CONTRL (7,0,0,0,AR,DE,HL)

TYPE 'PROTECTION = ',AR
TYPE 'CHRS = ',DE
END

This program displays the protection attributes and device
characteristics of logical unit 7.

731077 page 17 of 25 2/27/79 FORTRAN

MOVE Subroutine

General form:

CALL MOVE (n,locl,displ,loc2,disp2) Moves n bytes from locl to
/ / / / \ loc2. 1If either disp is
expression /expression / expression positive or zero, the
corresponding loc is the
character string character string symbolic name of the
or memory address or memory address starting location. If

disp is negative, loc
contains or is an absolute
memory address.

Examples:

CALL MOVE (6, 'ABCDEF',0,5CC00,-1)
CALL MOVE (2,A,-1,$CC00,-1)

CALL MOVE (1024,$CcC00,-1,A,-1)
CALL MOVE (10,COUNT,2,ADD1,-1)

The MOVE subroutine moves n bytes from locl to loc2. The
interpretations of locl and loc2 depend on the values of displ and
disp2, respectively.

If either disp is positive or zero, the corresponding loc is assumed
to be the symbolic name of the location containing the first byte of
the string to be moved (if locl), or the first byte of the
destination for the moved string (if loc2). Thus, locl or loc2 may
be a variable name, an array name, or an array element. Locl may
also be a literal string enclosed in single quotes; in that case, the
literal string contains the first and subsequent bytes of the string
to be moved. In any of these cases, disp specifies the displacement
in bytes from the first byte of loc to the actual starting byte.

If either disp is negative, the corresponding loc is assumed to
contain or be an absolute memory address. If loc is a variable name
or array element, that variable is assumed to contain the address of
the first byte to be moved, or the first destination location. To
specify an absolute memory address, use the form $addr, where addr is
a hexadecimal address.

731077 page 18 of 25 2/27/79 FORTRAN

Explanation of examples:

CALL MOVE (6, 'ABCDEF',0,$CC00,-1)
Moves ABCDEF to address CCOOH

CALL MOVE (2,A,-1,$CC00,-1)
Moves 2 bytes from the address stored in A to address
CCOOH

CALL MOVE (1024,s$CC00,-1,A,-1)
Moves 1024 bytes starting with address CCO0OH to the
address specified by A.

CALL MOVE (10,COUNT,2,ADD]1,-1)
Moves 10 bytes, starting at the third byte of COUNT, to
locations starting at the address stored in ADDI.

OUT Subroutine

General form:

CALL OUT (port, value) Outputs value to the specified port.
Example:

CALL OUT (254,0)
The OUT subroutine enables a FORTRAN program to output an 8-bit value
to a specified hardware port. If value or port lies outside the
range 0-255, its value modulo 256 is used.
Explanation of example:

CALL OUT (254,0)
This example outputs a zero to port FEH, the Sol video display scroll

control register. As a result, all 16 lines of the video memory will
appear on the screen, with line 0 at the top.

731077 page 19 of 25 2/27/79 FORTRAN

APPENDIX 6

EXECUTION ERRORS

A program may compile correctly and still generate "execution errors"
at runtime. Unless an execution error is trapped by means of an
ERRSET statement, it causes a message to be displayed and execution
of the program to be terminated.

Execution error messages have the form:
Runtime error: message, called from location
Pgm was executing line number in routine name
where:
message is one of the messages shown below.

location is the memory location of the error-producing call
to the runtime package.

The locations assigned to individual statements are
NOT indicated on any listing generated by FORTRAN.
To obtain a listing with locations shown, first
compile the program, specifying the B option (to
get FORTRAN statements interspersed with assembly
language code); then use the PTDOS assembler to
assemble $FORTASM (or the "assembly" file named in
the FORTRAN command line) and specify the listing
option.

number specifies the line in which the error occurred.
That number will be intelligible only if the X
option was declared in the named routine. (See the
description of the OPTIONS statement in Section
3.2.) Otherwise, the line number will appear as
?2?2?? If several line numbers are listed, the error
actually occurred in the first line specified.

name is the name of the routine in which the error
occurred.

Unless they are trapped, four of the execution errors - namely, FILE
OP, I/0 ERR, OPEN ERR, and SET UNIT - result in calls to the PTDOS
Explain Error Utility (UXOP). UXOP supplies a detailed explanation of
the error and returns control to PTDOS. After one of these errors
has occurred, it is no longer possible to rerun the FORTRAN progdgram
in memory, because UXOP uses memory occupied by the runtime package.
In order to run the program again, you must reload it from disk.

731077 page 20 of 25 2/27/79 FORTRAN

The error code for any runtime error may be supplied as an argument
in the ERRSET statement, which has the form:

ERRSET n, v

and signifies "If error v occurs, transfer control to the statement
labeled n. (See page 5-10 for a description of ERRSET.) It is
advisable to assume that any variable will be undefined after an
error that involves it.

The possible execution errors and their ERRSET codes are:

Code Message Meaning

3 ARG CNT ARGUMENT COUNT ERROR
Too many or too few arguments were passed
to a subprogram.

22 ASN GOTO ASSIGNED GOTO LABEL NOT IN LIST
The variable in an assigned GOTO statement
did not have the value of any label in the
list following it (nl, n2, etc.).

10 CALL POP CALL STACK POP ERROR
A RETURN without a destination was
executed. This error can be caused only by
a user's assembly language progdram.

9 CALL PSH CALL STACK PUSH ERROR
More than 62 nested subprogram calls were
made.

4 COM GOTO COMPUTED GOTO INDEX OUT OF RANGE

The variable specified in a computed GOTO
statement has a value either less than one
or greater than the number of statement
labels specified.

2 CONVERT 16 BIT CONVERSION ERROR
An overflow has occurred during the
conversion of a number to internal 16-bit
binary form. This error can occur during
1) the conversion of a unit number in an
input/output statement, 2) the evaluation
of a subscript, or 3) the conversion of a
floating-point number to 16-bit binary
form.

6 DIV ZERO DIVIDE BY ZERO
An attempt was made to divide by zero

11 FILE OP FILE OPERATION ERROR
An error occurred during an operation
involving a PTDOS file. This error
results in a call to UXOP; see the note
above.

731077 page 21 of 25 2/27/79 FORTRAN

18 FORMAT INVALID FORMAT
A formatted READ or WRITE referred to an
invalid FORMAT specification.

12 ILL UNIT ILLEGAL LOGICAL UNIT NUMBER
A logical unit number less than 2 or greater
than 63 was passed to one of the input/output
rougtines.

20 INPT ERR INPUT ERROR
The representation of a number in the
input file contained an invalid character.
Examples of invalid characters are a
second decimal point in a number, an E in
an F-type field, a decimal point in an
I-type field, etc.

1 INT RANG INTEGER OUT OF RANGE
An integer operation resulted in a number
too large to be stored.

19 I/0 ERR I/0 ERROR
An error occurred during a READ or WRITE
operation, and there was no error label
(for an error other than an end-of-file)
or no end-of-file label (for an
end-of-file error). This error results in
a call to UXOP; see the note above.

21 I/0 LIST INVALID I/0 LIST
A formatted READ or WRITE statement
contained an error in the input or output
list. This error can occur only if the I/O
list was constructed by a user's assembly
language program,

17 LINE LEN LINE LENGTH ERROR
An attempt was made to read or write a

record more than 250 characters long.

8 LOG NEG LOG OF NEGATIVE NUMBER
ALOG or ALOGl0 was called with a negative
argument.

14 OPEN ERR OPEN ERROR

An error occurred during the execution of
an OPEN statement. This message
encompasses all OPEN errors, except the
case of a nonexistent file. (If the file
named in the OPEN statement does not
exist, it is created.) This error results
in a call to UXOP; see the note above.

5 OVERFLOW FLOATING POINT OVERFLOW

A floating-point operation resulted in a
number too large to be stored.

731077 page 22 of 25 2/27/79 v FORTRAN

16

15

13

731077

SET UNIT

SQRT NEG

UNIT CLO

UNIT OPN

SET UNIT ERROR

An error occurred during reassignment of
the default unit (drive) number. This
error results in a call to UXOP; see the
note above.

SORT OF NEGATIVE NUMBER
The SQRT function was called with a
negative argument.

LOGICAL UNIT NOT OPEN

There was an attempt to read, write,
rewind, or perform some other operation on
a logical unit that was not associated
with a file.

LOGICAL UNIT ALREADY OPEN
A file has been assigned a logical unit
number already assigned to another file.

page 23 of 25 2/27/79

FORTRAN

APPENDIX 7
COMPARISON OF PTDOS AND ANSI STANDARD FORTRAN
Extended Disk FORTRAN includes these extensions to ANSI standard
FORTRAN (X3.9-1966)

* File management, including creating, killing, and changing
attributes.

* Random access to data files

* TInput from and output to device files, including
character-at-a~time terminal input

* Direct control over the video display
* Free format input and output

* Optional end-of-file and error branches in READ and WRITE
statements

* Arrays with up to seven dimensions

* Hexadecimal constants

* Character string data type and string move and compare routines

* ENCODE and DECODE statements for formatting data in memory

* IMPLICIT statement for implicit typing of variables and functions

* COPY statement to copy files of source statements into a FORTRAN
source program

* Assembly language interface - embedded assembly language
statements and calls to assembly language routines

* Access to absolute memory locations, including individual bits
* Program-controlled time delay

* Pseudo~random number generator function

* PpProgram control of runtime error trapping

* Execution tracing

* Ability to chain a sequence of programs

731077 page 24 of 25 2/27/79 FORTRAN

PTDOS FORTRAN does not conform to ANSI X3.9-1966 in the following
respects:

* Double precision variables, constants, functions, and format
specifications are not provided.

* Complex variables, constants, and functions are not provided.
* There is no EQUIVALENCE statement.
* ANSI FORTRAN allows DATA statements such as:
DATA X,Y,2/10,20,30/
In PTDOS FORTRAN this statement would have to be changed to:
DATA X/10/,Y/20,Z/30/
* Statement functions are not allowed.

* The following format specifications are not available: carriage
contrbl characters, D, G, and P.

* If an array name appears without dimension information in a
COMMON statement, it must be dimensioned in a preceding
DIMENSION, INTEGER, REAL, or LOGICAL statement.

* A variable may not have the same name as one of the system
functions listed in Appendix 3. COPY may not be used as a
variable name.

* Only the first five characters of function or subroutine names or
COMMON labels are retained. For example, PTDOS FORTRAN does not
differentiate between MYSUBl1 and MYSUB2.

* The following cannot be used for subroutine, function or COMMON
names: A, B, ¢, D, E, H, L, M, SP, PSW, or any PTDOS reserved
name contained in the files PTDEFS and NPTDEFS.

* The SIGN and ISIGN functions provided by PTDOS FORTRAN have a
single argument. In ANSI FORTRAN, these functions have two
arguments and transfer the sign of the second argument to the
first.

* The hyperbolic tangent function, TANH, is not provided.

731077 page 25 of 25 2/27/79 FORTRAN

	Table of Contents
	Section 1: Introduction
	Section 2: The PTDOS FORTRAN Language
	Section 3: Preparing the Source Program File
	Section 4: How to Compile, Assemble, and Execute a FORTRAN Program
	Section 5: PTDOS FORTRAN Statements
	Section 6: System Subroutines
	Section 7: System Functions
	Section 8: Assembly-Language Interface
	Appendix 1: FORTRAN Statement Summary
	Appendix 2: Summary of System Subroutines
	Appendix 3: Table of Functions
	Appendix 4: Device Interface
	Appendix 5: Compilation Error Messages
	Appendix 6: Execution Errors
	Appendix 7: Comparison of PTDOS and ANSI Standard FORTRAN
	Appendix 8: Bibliography
	Extended Disk FORTRAN Update (ECN 10377)
	FORTRAN Update (ECN 10513)

